230 research outputs found

    Measuring Accuracy of Automated Parsing and Categorization Tools and Processes in Digital Investigations

    Full text link
    This work presents a method for the measurement of the accuracy of evidential artifact extraction and categorization tasks in digital forensic investigations. Instead of focusing on the measurement of accuracy and errors in the functions of digital forensic tools, this work proposes the application of information retrieval measurement techniques that allow the incorporation of errors introduced by tools and analysis processes. This method uses a `gold standard' that is the collection of evidential objects determined by a digital investigator from suspect data with an unknown ground truth. This work proposes that the accuracy of tools and investigation processes can be evaluated compared to the derived gold standard using common precision and recall values. Two example case studies are presented showing the measurement of the accuracy of automated analysis tools as compared to an in-depth analysis by an expert. It is shown that such measurement can allow investigators to determine changes in accuracy of their processes over time, and determine if such a change is caused by their tools or knowledge.Comment: 17 pages, 2 appendices, 1 figure, 5th International Conference on Digital Forensics and Cyber Crime; Digital Forensics and Cyber Crime, pp. 147-169, 201

    Frequency of Agenesis Palmaris Longus through Clinical Examination - An East African Study

    Get PDF
    INTRODUCTION: The Palmaris longus, one of the most variable muscles in the body both flexes the wrist and tenses the palmar fascia. It is used by surgeons as a source of tendon graft and racial differences in its variation have been documented. We sought to determine the frequency of the absence of the Palmaris longus in an East African population. METHODS: A prospective study was conducted using ten common clinical tests among patients and students in a large teaching hospital in East Africa to determine the presence of a Palmaris longus. RESULTS: The overall rate of absence was 4.4% with unilateral absence at 3.3% and bilateral absence at 1.1%. The overall difference between males and females was not statistically significant (p = 0.605). Participants were more likely to have absence in their non dominant hand. DISCUSSION: Our findings though in contrast to many studies worldwide, it concurs with most studies done in the African setting. These differences may be due to the higher levels of manual labour and the more use of the right hand in these activities. The frequency of the absence of Palmaris longus in East Africa has been determined. Surgeons should acquaint themselves with prevalence in their areas of practice

    State based model of long-term potentiation and synaptic tagging and capture

    Get PDF
    Recent data indicate that plasticity protocols have not only synapse-specific but also more widespread effects. In particular, in synaptic tagging and capture (STC), tagged synapses can capture plasticity-related proteins, synthesized in response to strong stimulation of other synapses. This leads to long-lasting modification of only weakly stimulated synapses. Here we present a biophysical model of synaptic plasticity in the hippocampus that incorporates several key results from experiments on STC. The model specifies a set of physical states in which a synapse can exist, together with transition rates that are affected by high- and low-frequency stimulation protocols. In contrast to most standard plasticity models, the model exhibits both early- and late-phase LTP/D, de-potentiation, and STC. As such, it provides a useful starting point for further theoretical work on the role of STC in learning and memory

    Leave entitlements, time off work and the household financial impacts of quarantine compliance during an H1N1 outbreak

    Get PDF
    The Australian state of Victoria, with 5.2 million residents, enforced home quarantine during a H1N1 pandemic in 2009. The strategy was targeted at school children. The objective of this study was to investigate the extent to which parents’ access to paid sick leave or paid carer’s leave was associated with (a) time taken off work to care for quarantined children, (b) household finances, and (c) compliance with quarantine recommendations.This project was funded by two NHMRC Strategic Awards: “Call for research on H1N1 influenza 09 to inform public policy” (#628962) and “Changing patterns of work: Impacts on physical and mental health and the mediating role of resilience and social capital” (#375196). JM is supported by a NHMRC Career Development Award; DS is funded by an ARC Federation Fellowship

    Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.

    Get PDF
    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed

    The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Few research in multiple sclerosis (MS) has focused on physical rehabilitation of upper limb dysfunction, though the latter strongly influences independent performance of activities of daily living. Upper limb rehabilitation technology could hold promise for complementing traditional MS therapy. Consequently, this pilot study aimed to examine the feasibility of an 8-week mechanical-assisted training program for improving upper limb muscle strength and functional capacity in MS patients with evident paresis.</p> <p>Methods</p> <p>A case series was applied, with provision of a training program (3×/week, 30 minutes/session), supplementary on the customary maintaining care, by employing a gravity-supporting exoskeleton apparatus (Armeo Spring). Ten high-level disability MS patients (Expanded Disability Status Scale 7.0-8.5) actively performed task-oriented movements in a virtual real-life-like learning environment with the affected upper limb. Tests were administered before and after training, and at 2-month follow-up. Muscle strength was determined through the Motricity Index and Jamar hand-held dynamometer. Functional capacity was assessed using the TEMPA, Action Research Arm Test (ARAT) and 9-Hole Peg Test (9HPT).</p> <p>Results</p> <p>Muscle strength did not change significantly. Significant gains were particularly found in functional capacity tests. After training completion, TEMPA scores improved (<it>p </it>= 0.02), while a trend towards significance was found for the 9HPT (<it>p </it>= 0.05). At follow-up, the TEMPA as well as ARAT showed greater improvement relative to baseline than after the 8-week intervention period (<it>p </it>= 0.01, <it>p </it>= 0.02 respectively).</p> <p>Conclusions</p> <p>The results of present pilot study suggest that upper limb functionality of high-level disability MS patients can be positively influenced by means of a technology-enhanced physical rehabilitation program.</p

    Identification and Interpretation of Longitudinal Gene Expression Changes in Trauma

    Get PDF
    The relationship between leukocyte gene expression and recovery of respiratory function after injury may provide information on the etiology of multiple organ dysfunction.To find a list of genes for which expression after injury predicts respiratory recovery, and to identify which networks and pathways characterize these genes.Blood was sampled at 12 hours and at 1, 4, 7, 21 and 28 days from 147 patients who had been admitted to the hospital after blunt trauma. Leukocyte gene expression was measured using Affymetrix oligonucleotide arrays. A linear model, fit to each probe-set expression value, was used to impute the gene expression trajectory over the entire follow-up period. The proportional hazards model score test was used to calculate the statistical significance of each probe-set trajectory in predicting respiratory recovery. A list of genes was determined such that the expected proportion of false positive results was less than 10%. These genes were compared to the Gene Ontology for 'response to stimulus' and, using Ingenuity software, were mapped into networks and pathways.The median time to respiratory recovery was 6 days. There were 170 probe-sets representing 135 genes that were found to be related to respiratory recovery. These genes could be mapped to nine networks. Two known pathways that were activated were antigen processing and presentation and JAK-signaling.The examination of the relationship of gene expression over time with a patient's clinical course can provide information which may be useful in determining the mechanism of recovery or lack of recovery after severe injury

    Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: A feasibility study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is now sufficient evidence that using a rehabilitation protocol involving motor imagery (MI) practice in conjunction with physical practice (PP) of goal-directed rehabilitation tasks leads to enhanced functional recovery of paralyzed limbs among stroke sufferers. It is however difficult to confirm patient engagement during an MI in the absence of any on-line measure. Fortunately an EEG-based brain-computer interface (BCI) can provide an on-line measure of MI activity as a neurofeedback for the BCI user to help him/her focus better on the MI task. However initial performance of novice BCI users may be quite moderate and may cause frustration. This paper reports a pilot study in which a BCI system is used to provide a computer game-based neurofeedback to stroke participants during the MI part of a protocol.</p> <p>Methods</p> <p>The participants included five chronic hemiplegic stroke sufferers. Participants received up to twelve 30-minute MI practice sessions (in conjunction with PP sessions of the same duration) on 2 days a week for 6 weeks. The BCI neurofeedback performance was evaluated based on the MI task classification accuracy (CA) rate. A set of outcome measures including action research arm test (ARAT) and grip strength (GS), was made use of in assessing the upper limb functional recovery. In addition, since stroke sufferers often experience physical tiredness, which may influence the protocol effectiveness, their fatigue and mood levels were assessed regularly.</p> <p>Results</p> <p>Positive improvement in at least one of the outcome measures was observed in all the participants, while improvements approached a minimal clinically important difference (MCID) for the ARAT. The on-line CA of MI induced sensorimotor rhythm (SMR) modulation patterns in the form of lateralized event-related desynchronization (ERD) and event-related synchronization (ERS) effects, for novice participants was in a moderate range of 60-75% within the limited 12 training sessions. The ERD/ERS change from the first to the last session was statistically significant for only two participants.</p> <p>Conclusions</p> <p>Overall the crucial observation is that the moderate BCI classification performance did not impede the positive rehabilitation trends as quantified with the rehabilitation outcome measures adopted in this study. Therefore it can be concluded that the BCI supported MI is a feasible intervention as part of a post-stroke rehabilitation protocol combining both PP and MI practice of rehabilitation tasks. Although these findings are promising, the scope of the final conclusions is limited by the small sample size and the lack of a control group.</p
    corecore