369 research outputs found

    Off-shell N=(4,4) supersymmetry for new (2,2) vector multiplets

    Full text link
    We discuss the conditions for extra supersymmetry of the N=(2,2) supersymmetric vector multiplets described in arXiv:0705.3201 [hep-th] and in arXiv:0808.1535 [hep-th]. We find (4,4) supersymmetry for the semichiral vector multiplet but not for the Large Vector Multiplet.Comment: 15 page

    N=2 Conformal Superspace in Four Dimensions

    Full text link
    We develop the geometry of four dimensional N=2 superspace where the entire conformal algebra of SU(2,2|2) is realized linearly in the structure group rather than just the SL(2,C) x U(2)_R subgroup of Lorentz and R-symmetries, extending to N=2 our prior result for N=1 superspace. This formulation explicitly lifts to superspace the existing methods of the N=2 superconformal tensor calculus; at the same time the geometry, when degauged to SL(2,C) x U(2)_R, reproduces the existing formulation of N=2 conformal supergravity constructed by Howe.Comment: 43 pages; v2 references added, acknowledgments update

    Variant supercurrent multiplets

    Full text link
    In N = 1 rigid supersymmetric theories, there exist three standard realizations of the supercurrent multiplet corresponding to the (i) old minimal, (ii) new minimal and (iii) non-minimal off-shell formulations for N = 1 supergravity. Recently, Komargodski and Seiberg in arXiv:1002.2228 put forward a new supercurrent and proved its consistency, although in the past it was believed not to exist. In this paper, three new variant supercurrent multiplets are proposed. Implications for supergravity-matter systems are discussed.Comment: 11 pages; V2: minor changes in sect. 3; V3: published version; V4: typos in eq. (2.3) corrected; V5: comments and references adde

    4D, N = 1 Supersymmetry Genomics (II)

    Full text link
    We continue the development of a theory of off-shell supersymmetric representations analogous to that of compact Lie algebras such as SU(3). For off-shell 4D, N = 1 systems, quark-like representations have been identified [1] in terms of cis-Adinkras and trans-Adinkras and it has been conjectured that arbitrary representations are composites of ncn_c-cis and ntn_t-trans representations. Analyzing the real scalar and complex linear superfield multiplets, these "chemical enantiomer" numbers are found to be ncn_c = ntn_t = 1 and ncn_c = 1, ntn_t = 2, respectively.Comment: 40 pages, 8 figures, sequel to "4D, N = 1 Supersymmetry Genomics (I)" [arxiv: 0902.3830

    Extended supersymmetric sigma models in AdS_4 from projective superspace

    Full text link
    There exist two superspace approaches to describe N=2 supersymmetric nonlinear sigma models in four-dimensional anti-de Sitter (AdS_4) space: (i) in terms of N=1 AdS chiral superfields, as developed in arXiv:1105.3111 and arXiv:1108.5290; and (ii) in terms of N=2 polar supermultiplets using the AdS projective-superspace techniques developed in arXiv:0807.3368. The virtue of the approach (i) is that it makes manifest the geometric properties of the N=2 supersymmetric sigma-models in AdS_4. The target space must be a non-compact hyperkahler manifold endowed with a Killing vector field which generates an SO(2) group of rotations on the two-sphere of complex structures. The power of the approach (ii) is that it allows us, in principle, to generate hyperkahler metrics as well as to address the problem of deformations of such metrics. Here we show how to relate the formulation (ii) to (i) by integrating out an infinite number of N=1 AdS auxiliary superfields and performing a superfield duality transformation. We also develop a novel description of the most general N=2 supersymmetric nonlinear sigma-model in AdS_4 in terms of chiral superfields on three-dimensional N=2 flat superspace without central charge. This superspace naturally originates from a conformally flat realization for the four-dimensional N=2 AdS superspace that makes use of Poincare coordinates for AdS_4. This novel formulation allows us to uncover several interesting geometric results.Comment: 88 pages; v3: typos corrected, version published in JHE

    N = 2 supersymmetric sigma-models and duality

    Full text link
    For two families of four-dimensional off-shell N = 2 supersymmetric nonlinear sigma-models constructed originally in projective superspace, we develop their formulation in terms of N = 1 chiral superfields. Specifically, these theories are: (i) sigma-models on cotangent bundles T*M of arbitrary real analytic Kaehler manifolds M; (ii) general superconformal sigma-models described by weight-one polar supermultiplets. Using superspace techniques, we obtain a universal expression for the holomorphic symplectic two-form \omega^{(2,0)} which determines the second supersymmetry transformation and is associated with the two complex structures of the hyperkaehler space T*M that are complimentary to the one induced from M. This two-form is shown to coincide with the canonical holomorphic symplectic structure. In the case (ii), we demonstrate that \omega^{(2,0)} and the homothetic conformal Killing vector determine the explicit form of the superconformal transformations. At the heart of our construction is the duality (generalized Legendre transform) between off-shell N = 2 supersymmetric nonlinear sigma-models and their on-shell N = 1 chiral realizations. We finally present the most general N = 2 superconformal nonlinear sigma-model formulated in terms of N = 1 chiral superfields. The approach developed can naturally be generalized in order to describe 5D and 6D superconformal nonlinear sigma-models in 4D N = 1 superspace.Comment: 31 pages, no figures; V2: reference and comments added, typos corrected; V3: more typos corrected, published versio

    The linear multiplet and ectoplasm

    Full text link
    In the framework of the superconformal tensor calculus for 4D N=2 supergravity, locally supersymmetric actions are often constructed using the linear multiplet. We provide a superform formulation for the linear multiplet and derive the corresponding action functional using the ectoplasm method (also known as the superform approach to the construction of supersymmetric invariants). We propose a new locally supersymmetric action which makes use of a deformed linear multiplet. The novel feature of this multiplet is that it corresponds to the case of a gauged central charge using a one-form potential not annihilated by the central charge (unlike the standard N=2 vector multiplet). Such a gauge one-form can be chosen to describe a variant nonlinear vector-tensor multiplet. As a byproduct of our construction, we also find a variant realization of the tensor multiplet in supergravity where one of the auxiliaries is replaced by the field strength of a gauge three-form.Comment: 31 pages; v3: minor corrections and typos fixed, version to appear in JHE

    N=2 supergravity and supercurrents

    Full text link
    We address the problem of classifying all N=2 supercurrent multiplets in four space-time dimensions. For this purpose we consider the minimal formulation of N=2 Poincare supergravity with a tensor compensator, and derive its linearized action in terms of three N=2 off-shell multiplets: an unconstrained scalar superfield, a vector multiplet, and a tensor multiplet. Such an action was ruled out to exist in the past. Using the action constructed, one can derive other models for linearized N=2 supergravity by applying N=2 superfield duality transformations. The action depends parametrically on a constant non-vanishing real isotriplet g^{ij}=g^{ji} which originates as an expectation value of the tensor compensator. Upon reduction to N=1 superfields, we show that the model describes two dually equivalent formulations for the massless multiplet (1,3/2)+(3/2,2) depending on a choice of g^{ij}. In the case g^{11}=g^{22}=0, the action describes (i) new minimal N=1 supergravity; and (ii) the Fradkin-Vasiliev-de Wit-van Holten gravitino multiplet. In the case g^{12}=0, on the other hand, the action describes (i) old minimal N=1 supergravity; and (ii) the Ogievetsky-Sokatchev gravitino multiplet.Comment: 40 pages; v2: added references, some comments, new appendi
    • 

    corecore