47 research outputs found

    Ultrathin 2 nm gold as ideal impedance-matched absorber for infrared light

    Full text link
    Thermal detectors are a cornerstone of infrared (IR) and terahertz (THz) technology due to their broad spectral range. These detectors call for suitable broad spectral absorbers with minimalthermal mass. Often this is realized by plasmonic absorbers, which ensure a high absorptivity butonly for a narrow spectral band. Alternativly, a common approach is based on impedance-matching the sheet resistance of a thin metallic film to half the free-space impedance. Thereby, it is possible to achieve a wavelength-independent absorptivity of up to 50 %, depending on the dielectric properties of the underlying substrate. However, existing absorber films typicallyrequire a thickness of the order of tens of nanometers, such as titanium nitride (14 nm), whichcan significantly deteriorate the response of a thermal transducers. Here, we present the application of ultrathin gold (2 nm) on top of a 1.2 nm copper oxide seed layer as an effective IR absorber. An almost wavelength-independent and long-time stable absorptivity of 47(3) %, ranging from 2 μ\mum to 20 μ\mum, could be obtained and is further discussed. The presented gold thin-film represents analmost ideal impedance-matched IR absorber that allows a significant improvement of state-of-the-art thermal detector technology

    Understanding Global Change: From Documentation and Collaboration to Social Transformation

    Get PDF
    The conclusion to the book situates the chapters within four programs of anthropological research on climate change: (1) documentation of local impacts of and adaptations to climate change, (2) connections to socioeconomic and political contexts, (3) collaborations with nonanthropologists, and (4) activism and social transformation. The final section notes the persistent challenges to creating positive change and meaningful research outcomes. It highlights some examples of success and outlines future directions for politically engaged anthropological work around climate change

    Paclobutrazol treatment as a potential strategy for higher seed and oil yield in field-grown camelina sativa L. Crantz

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Camelina (Camelina sativa </it>L. Crantz) is a non-food oilseed crop which holds promise as an alternative biofuel energy resource. Its ability to grow in a variety of climatic and soil conditions and minimal requirements of agronomical inputs than other oilseed crops makes it economically viable for advanced biofuel production. We designed a study to investigate the effect of paclobutrazol [2RS, 3RS)-1-(4-Chlorophenyl)-4,4-dimethyl-2-(1H-1,2,4-triazol-1-yl)pentan-3-ol] (PBZ), a popular plant growth regulator, on the seed and oil yield of <it>Camelina sativa </it>(cv. Celine).</p> <p>Results</p> <p>A field-based micro-trial setup was established in a randomized block design and the study was performed twice within a span of five months (October 2010 to February 2011) and five different PBZ treatments (Control: T<sub>0</sub>; 25 mg l<sup>-1</sup>: T<sub>1</sub>; 50 mg l<sup>-1</sup>: T<sub>2</sub>; 75 mg l<sup>-1</sup>: T<sub>3</sub>; 100 mg l<sup>-1</sup>: T<sub>4</sub>; 125 mg l<sup>-1</sup>: T<sub>5</sub>) were applied (soil application) at the time of initiation of flowering. PBZ at 100 mg l<sup>-1 </sup>concentration (T<sub>4</sub>) resulted in highest seed and oil yield by 80% and 15%, respectively. The seed yield increment was mainly due to enhanced number of siliques per plant when compared to control. The PBZ - treated plants displayed better photosynthetic leaf gas exchange characteristics, higher chlorophyll contents and possessed dark green leaves which were photosynthetically active for a longer period and facilitated higher photoassimilation.</p> <p>Conclusion</p> <p>We report for the first time that application of optimized PBZ dose can be a potential strategy to achieve higher seed and oil yield from <it>Camelina sativa </it>that holds great promise as a biofuel crop in future.</p

    Restrictions to root growth limit the yield of shoots of irrigated white clover

    No full text
    corecore