83 research outputs found

    A survey of techniques applied to non-stationary waveforms in electrical power systems

    Full text link
    The well-known and ever-present time-varying and non-stationary nature of waveforms in power systems requires a comprehensive and precise analytical basis that needs to be incorporated in the system studies and analyses. This time-varying behavior is due to continuous changes in system configurations, linear load levels and operating modes of nonlinear load / equipment and thus present conceptual and practical challenges. The objective of this paper is to provide a comprehensive bibliographical survey of the proposed techniques to deal with time-varying and non-stationary waveforms in power systems

    Tracking simultaneous time-varying power harmonic distortions using filter banks

    Full text link
    Although it is well known that the Fourier analysis is only accurately applicable to steady-state waveforms, it is a widely used tool to study and monitor time-varying signals, such as are commonplace in electrical power systems. The disadvantages of the Fourier analysis, such as frequency spillover or problems due to sampling (data window) truncation can often be minimized by various windowing techniques, but they nevertheless exist. This paper demonstrates that it is possible to track and visualize amplitude and time-varying power systems harmonics, without frequency spillover caused by classical time-frequency techniques. This new tool allows for a clear visualization of time-varying harmonics, which can lead to better ways to track harmonic distortion and understand time-dependent power quality parameters. It has been applied to extract the harmonic contents of a rolling mill. It also has the potential to assist with control and protection applications

    The Action of Polyphenols in Diabetes Mellitus and Alzheimer's Disease: A Common Agent for Overlapping Pathologies

    Get PDF
    Diabetes Mellitus (DM) and Alzheimer's disease (AD) are two prevalent diseases in modern societies, which are caused mainly by current lifestyle, aging and genetic alterations. It has already been demonstrated that these two diseases are associated, since individuals suffering from DM are prone to develop AD. Conversely, it is also known that individuals with AD are more susceptible to DM, namely type 2 diabetes (T2DM). Therefore, these two pathologies, although completely different in terms of symptomatology, end up sharing several mechanisms at the molecular level, with the most obvious being the increase of oxidative stress and inflammation. Polyphenols are natural compounds widely spread in fruits and vegetables whose dietary intake has been considered inversely proportional to the incidence of DM and AD. So, it is believed that this group of phytochemicals may have preventive and therapeutic potential, not only by reducing the risk and delaying the development of these pathologies, but also by improving brain's metabolic profile and cognitive function. The aim of this review is to understand the extent to which DM and AD are related pathologies, the degree of similarity and the relationship between them, to detail the molecular mechanisms by which polyphenols may exert a protective effect, such as antioxidant and anti-inflammatory effects, and highlight possible advantages of their use as common preventive and therapeutic alternatives.info:eu-repo/semantics/publishedVersio
    • 

    corecore