48,732 research outputs found
Gauge fields in a string-cigar braneworld
In this work we investigate the properties of an Abelian gauge vector field
in a thin and in a smoothed string-like braneworld, the so-called string-cigar
model. This thick brane scenario satisfies the regularity conditions and it can
be regarded as an interior and exterior string-like solution. The source
undergoes a geometric Ricci flow which is connected to a variation of the bulk
cosmological constant. The Ricci flow changes the width and amplitude of the
massless mode at the brane core and recover the usual thin string-like behavior
at large distances. By numerical means we obtain the Kaluza-Klein (KK) spectrum
for both the thin brane and the string-cigar. It turns out that both models
exhibit a mass gap between the massless and the massive modes and between the
high and the low mass regimes. The KK modes are smooth near the brane and their
amplitude are enhanced by the string-cigar core. The analogue Schr\"odinger
potential is also tuned by the geometric flow.Comment: The discussion about the Kaluza-Klein spectrum of the gauge field was
improved. Numerical analysis was adapted to the conventional notation on
Kaluza-Klein number. Some graphics were modified for considering other
notation. Results unchanged. References added. Corrected typos. 17 pages. 6
figures. To match version to appears in Physics Letters
Quantitative chemical tagging, stellar ages and the chemo-dynamical evolution of the Galactic disc
The early science results from the new generation of high-resolution stellar
spectroscopic surveys, such as GALAH and the Gaia-ESO survey, will represent
major milestones in the quest to chemically tag the Galaxy. Yet this technique
to reconstruct dispersed coeval stellar groups has remained largely untested
until recently. We build on previous work that developed an empirical chemical
tagging probability function, which describes the likelihood that two field
stars are conatal, that is, they were formed in the same cluster environment.
In this work we perform the first ever blind chemical tagging experiment, i.e.,
tagging stars with no known or otherwise discernable associations, on a sample
of 714 disc field stars with a number of high quality high resolution
homogeneous metal abundance measurements. We present evidence that chemical
tagging of field stars does identify coeval groups of stars, yet these groups
may not represent distinct formation sites, e.g. as in dissolved open clusters,
as previously thought. Our results point to several important conclusions,
among them that group finding will be limited strictly to chemical abundance
space, e.g. stellar ages, kinematics, colors, temperature and surface gravity
do not enhance the detectability of groups. We also demonstrate that in
addition to its role in probing the chemical enrichment and kinematic history
of the Galactic disc, chemical tagging represents a powerful new stellar age
determination technique.Comment: 12 pages, 9 figures, accepted for publication in Monthly Notices of
the Royal Astronomical Society (MNRAS
Regular string-like braneworlds
In this work, we propose a new class of smooth thick string-like braneworld
in six dimensions. The brane exhibits a varying brane-tension and an
asymptotic behavior. The brane-core geometry is parametrized by the Bulk
cosmological constant, the brane width and by a geometrical deformation
parameter. The source satisfies the dominant energy condition for the
undeformed solution and has an exotic asymptotic regime for the deformed
solution. This scenario provides a normalized massless Kaluza-Klein mode for
the scalar, gravitational and gauge sectors. The near-brane geometry allows
massive resonant modes at the brane for the state and nearby the brane for
.Comment: 14 pages, 12 figures. Some modifications to match the published
version in EPJ
Calculation of pure dephasing for excitons in quantum dots
Pure dephasing of an exciton in a small quantum dot by optical and acoustic
phonons is calculated using the ``independent boson model''. Considering the
case of zero temperature the dephasing is shown to be only partial which
manifests itself in the polarization decaying to a finite value. Typical
dephasing times can be assigned even though the spectra exhibits strongly
non-Lorentzian line shapes. We show that the dephasing from LO phonon
scattering, occurs on a much larger time scale than that of dephasing due to
acoustic phonons which for low temperatures are also a more efficient dephasing
mechanism. The typical dephasing time is shown to strongly depend on the
quantum dot size whereas the electron phonon ``coupling strength'' and external
electric fields tend mostly to effect the residual coherence. The relevance of
the dephasing times for current quantum information processing implementation
schemes in quantum dots is discussed
c-axis transport and phenomenology of the pseudo-gap state in
We measure and analyze the resistivity of
crystals for different doping . We obtain the fraction of carrier
that do not participate to the c-axis
conductivity. All the curves collapse onto a universal curve
when plotted against a reduced temperature
. We find that at the superconducting
transition is doping independent. We also show that a magnetic field up
to 14 T does not affect the degree of localization in the (a,b) planes but
widens the temperature range of the x-scaling by suppressing the
superconducting phase coherence.Comment: 11 pages, 5 figures, submitted to Phys.Rev.
Exchange interaction effects in the thermodynamic properties of quantum dots
We study electron-electron interaction effects in the thermodynamic
properties of quantum-dot systems. We obtain the direct and exchange
contributions to the specific heat C_v in the self-consistent Hartree-Fock
approximation at finite temperatures. An exchange-induced phase transition is
observed and the transition temperature is shown to be inversely proportional
to the size of the system. The exchange contribution to C_v dominates over the
direct and kinetic contributions in the intermediate regime of interaction
strength (r_s ~ 1). Furthermore, the electron-electron interaction modifies
both the amplitude and the period of magnetic field induced oscillations in
C_v.Comment: 4 pages, 4 figures; To appear in Phys. Rev.
- …