54,554 research outputs found
Controlled dephasing of a quantum dot in the Kondo regime
Kondo correlation in a spin polarized quantum dot (QD) results from the
dynamical formation of a spin singlet between the dot's net spin and a Kondo
cloud of electrons in the leads, leading to enhanced coherent transport through
the QD. We demonstrate here significant dephasing of such transport by coupling
the QD and its leads to potential fluctuations in a near by 'potential
detector'. The qualitative dephasing is similar to that of a QD in the Coulomb
Blockade regime in spite of the fact that the mechanism of transport is quite
different. A much stronger than expected suppression of coherent transport is
measured, suggesting that dephasing is induced mostly in the 'Kondo cloud' of
electrons within the leads and not in the QD.Comment: to be published in PR
Application of the method of multiple scales to unravel energy exchange in nonlinear locally resonant metamaterials
In this paper, the effect of weak nonlinearities in 1D locally resonant
metamaterials is investigated via the method of multiple scales. Commonly
employed to the investigate the effect of weakly nonlinear interactions on the
free wave propagation through a phononic structure or on the dynamic response
of a Duffing oscillator, the method of multiple scales is here used to
investigate the forced wave propagation through locally resonant metamaterials.
The perturbation approach reveals that energy exchange may occur between
propagative and evanescent waves induced by quadratic nonlinear local
interaction
- …