81,388 research outputs found

    Ricci dark energy in Chern-Simons modified gravity

    Full text link
    In this work, we have considered the Ricci dark energy model, where the energy density of the universe is proportional to the Ricci scalar curvature, in the dynamic Chern-Simons modified gravity. We show that in this context the evolution of the scale factor is similar to that displayed by the modified Chaplygin gas.Comment: 7 pages; to appear in EPJ

    Communicating via ignorance: Increasing communication capacity via superposition of order

    Full text link
    Classically, no information can be transmitted through a depolarising, that is a completely noisy, channel. We show that by combining a depolarising channel with another channel in an indefinite causal order---that is, when there is superposition of the order that these two channels were applied---it becomes possible to transmit significant information. We consider two limiting cases. When both channels are fully-depolarising, the ideal limit is communication of 0.049 bits; experimentally we achieve (3.4±0.2)×10−2(3.4{\pm}0.2){\times}10^{-2} bits. When one channel is fully-depolarising, and the other is a known unitary, the ideal limit is communication of 1 bit. We experimentally achieve 0.64±{\pm}0.02 bits. Our results offer intriguing possibilities for future communication strategies beyond conventional quantum Shannon theory

    On FRW Model in Conformal Teleparallel Gravity

    Full text link
    In this paper we use the conformal teleparallel gravity to study an isotropic and homogeneous Universe which is settled by the FRW metric. We solve the field equations and we obtain the behavior of some cosmological parameters such as scale factor, deceleration parameter and the energy density of the perfect fluid which is the matter field of our model. The field equations, that we called modified Friedmann equations, allow us to define a dark fluid, with dark energy density and dark pressure, responsible for the acceleration in the Universe.Comment: Accepted in EPJ

    Noncommutativity due to spin

    Full text link
    Using the Berezin-Marinov pseudoclassical formulation of spin particle we propose a classical model of spin noncommutativity. In the nonrelativistic case, the Poisson brackets between the coordinates are proportional to the spin angular momentum. The quantization of the model leads to the noncommutativity with mixed spacial and spin degrees of freedom. A modified Pauli equation, describing a spin half particle in an external e.m. field is obtained. We show that nonlocality caused by the spin noncommutativity depends on the spin of the particle; for spin zero, nonlocality does not appear, for spin half, ΔxΔy≥θ2/2\Delta x\Delta y\geq\theta^{2}/2, etc. In the relativistic case the noncommutative Dirac equation was derived. For that we introduce a new star product. The advantage of our model is that in spite of the presence of noncommutativity and nonlocality, it is Lorentz invariant. Also, in the quasiclassical approximation it gives noncommutativity with a nilpotent parameter.Comment: 11 pages, references adda

    Wang-Landau sampling in three-dimensional polymers

    Full text link
    Monte Carlo simulations using Wang-Landau sampling are performed to study three-dimensional chains of homopolymers on a lattice. We confirm the accuracy of the method by calculating the thermodynamic properties of this system. Our results are in good agreement with those obtained using Metropolis importance sampling. This algorithm enables one to accurately simulate the usually hardly accessible low-temperature regions since it determines the density of states in a single simulation.Comment: 5 pages, 9 figures arch-ive/Brazilian Journal of Physic
    • …
    corecore