76,651 research outputs found
Low redshift constraints on energy-momentum-powered gravity models
There has been recent interest in the cosmological consequences of
energy-momentum-powered gravity models, in which the matter side of Einstein's
equations is modified by the addition of a term proportional to some power,
, of the energy-momentum tensor, in addition to the canonical linear term.
In this work we treat these models as phenomenological extensions of the
standard CDM, containing both matter and a cosmological constant. We
also quantitatively constrain the additional model parameters using low
redshift background cosmology data that are specifically from Type Ia
supernovas and Hubble parameter measurements. We start by studying specific
cases of these models with fixed values of which lead to an analytic
expression for the Friedmann equation; we discuss both their current
constraints and how the models may be further constrained by future
observations of Type Ia supernovas for WFIRST complemented by measurements of
the redshift drift by the ELT. We then consider and constrain a more extended
parameter space, allowing to be a free parameter and considering scenarios
with and without a cosmological constant. These models do not solve the
cosmological constant problem per se. Nonetheless these models can
phenomenologically lead to a recent accelerating universe without a
cosmological constant at the cost of having a preferred matter density of
around instead of the usual . Finally we
also briefly constrain scenarios without a cosmological constant, where the
single component has a constant equation of state which needs not be that of
matter; we provide an illustrative comparison of this model with a more
standard dynamical dark energy model with a constant equation of state.Comment: 13+2 pages, 12+1 figures; A&A (in press
Magnetic monopole and string excitations in a two-dimensional spin ice
We study the magnetic excitations of a square lattice spin-ice recently
produced in an artificial form, as an array of nanoscale magnets. Our analysis,
based upon the dipolar interaction between the nanomagnetic islands, correctly
reproduces the ground-state observed experimentally. In addition, we find
magnetic monopole-like excitations effectively interacting by means of the
usual Coulombic plus a linear confining potential, the latter being related to
a string-like excitation binding the monopoles pairs, what indicates that the
fractionalization of magnetic dipoles may not be so easy in two dimensions.
These findings contrast this material with the three-dimensional analogue,
where such monopoles experience only the Coulombic interaction. We discuss,
however, two entropic effects that affect the monopole interactions: firstly,
the string configurational entropy may loose the string tension and then, free
magnetic monopoles should also be found in lower dimensional spin ices;
secondly, in contrast to the string configurational entropy, an entropically
driven Coulomb force, which increases with temperature, has the opposite effect
of confining the magnetic defects.Comment: 8 pages. Accepted by Journal of Applied Physics (2009
Scale insects (Hemiptera: Coccoidea) of ornamental plants from Sao Carlos, Sao Paulo, Brazil
A list of 35 scale insects collected from 72 ornamental plant species in Sao Carlos, Sao Paulo, Brazil is provided. Regarding host specificity, 30 scale insects were polyphagous, 4 oligophagous, and 1 monophagous. A total of 102 coccoid/plant associations are recorded, 29 of which are new host records for the species; 60 are new host records for the species in Brazil. Pulvinaria urbicola Cockerell, 1893 (Coccidae), Phenacoccus similis Granara de Willink, 1983 (Pseudococcidae), and Orthezia molinarii (Morrison, 1952) (Ortheziidae) are recorded for the first time in Brazil. In addition, we describe the injury caused by scale insects on ornamental plants
Chemical abundances and kinematics of barium stars
In this paper we present an homogeneous analysis of photospheric abundances
based on high-resolution spectroscopy of a sample of 182 barium stars and
candidates. We determined atmospheric parameters, spectroscopic distances,
stellar masses, ages, luminosities and scale height, radial velocities,
abundances of the Na, Al, -elements, iron-peak elements, and s-process
elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium
model atmospheres of Kurucz and the spectral analysis code {\sc moog}. We found
that the metallicities, the temperatures and the surface gravities for barium
stars can not be represented by a single gaussian distribution. The abundances
of -elements and iron peak elements are similar to those of field giants
with the same metallicity. Sodium presents some degree of enrichment in more
evolved stars that could be attributed to the NeNa cycle. As expected, the
barium stars show overabundance of the elements created by the s-process. By
measuring the mean heavy-element abundance pattern as given by the ratio
[s/Fe], we found that the barium stars present several degrees of enrichment.
We also obtained the [hs/ls] ratio by measuring the photospheric abundances of
the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and
the [hs/ls] ratios are strongly anti-correlated with the metallicity. Our
kinematical analysis showed that 90% of the barium stars belong to the thin
disk population. Based on their luminosities, none of the barium stars are
luminous enough to be an AGB star, nor to become self-enriched in the s-process
elements. Finally, we determined that the barium stars also follow an
age-metallicity relation.Comment: 30 pages, 26 figures, 18 tables, accepted for publication in MNRA
Topological Approach to Microcanonical Thermodynamics and Phase Transition of Interacting Classical Spins
We propose a topological approach suitable to establish a connection between
thermodynamics and topology in the microcanonical ensemble. Indeed, we report
on results that point to the possibility of describing {\it interacting
classical spin systems} in the thermodynamic limit, including the occurrence of
a phase transition, using topology arguments only. Our approach relies on Morse
theory, through the determination of the critical points of the potential
energy, which is the proper Morse function. Our main finding is to show that,
in the context of the studied classical models, the Euler characteristic
embeds the necessary features for a correct description of several
magnetic thermodynamic quantities of the systems, such as the magnetization,
correlation function, susceptibility, and critical temperature. Despite the
classical nature of the studied models, such quantities are those that do not
violate the laws of thermodynamics [with the proviso that Van der Waals loop
states are mean field (MF) artifacts]. We also discuss the subtle connection
between our approach using the Euler entropy, defined by the logarithm of the
modulus of per site, and that using the {\it Boltzmann}
microcanonical entropy. Moreover, the results suggest that the loss of
regularity in the Morse function is associated with the occurrence of unstable
and metastable thermodynamic solutions in the MF case. The reliability of our
approach is tested in two exactly soluble systems: the infinite-range and the
short-range models in the presence of a magnetic field. In particular, we
confirm that the topological hypothesis holds for both the infinite-range () and the short-range () models. Further studies are very
desirable in order to clarify the extension of the validity of our proposal
- …