74,366 research outputs found
Magnetic monopole and string excitations in a two-dimensional spin ice
We study the magnetic excitations of a square lattice spin-ice recently
produced in an artificial form, as an array of nanoscale magnets. Our analysis,
based upon the dipolar interaction between the nanomagnetic islands, correctly
reproduces the ground-state observed experimentally. In addition, we find
magnetic monopole-like excitations effectively interacting by means of the
usual Coulombic plus a linear confining potential, the latter being related to
a string-like excitation binding the monopoles pairs, what indicates that the
fractionalization of magnetic dipoles may not be so easy in two dimensions.
These findings contrast this material with the three-dimensional analogue,
where such monopoles experience only the Coulombic interaction. We discuss,
however, two entropic effects that affect the monopole interactions: firstly,
the string configurational entropy may loose the string tension and then, free
magnetic monopoles should also be found in lower dimensional spin ices;
secondly, in contrast to the string configurational entropy, an entropically
driven Coulomb force, which increases with temperature, has the opposite effect
of confining the magnetic defects.Comment: 8 pages. Accepted by Journal of Applied Physics (2009
Scale insects (Hemiptera: Coccoidea) of ornamental plants from Sao Carlos, Sao Paulo, Brazil
A list of 35 scale insects collected from 72 ornamental plant species in Sao Carlos, Sao Paulo, Brazil is provided. Regarding host specificity, 30 scale insects were polyphagous, 4 oligophagous, and 1 monophagous. A total of 102 coccoid/plant associations are recorded, 29 of which are new host records for the species; 60 are new host records for the species in Brazil. Pulvinaria urbicola Cockerell, 1893 (Coccidae), Phenacoccus similis Granara de Willink, 1983 (Pseudococcidae), and Orthezia molinarii (Morrison, 1952) (Ortheziidae) are recorded for the first time in Brazil. In addition, we describe the injury caused by scale insects on ornamental plants
Ion motion in the wake driven by long particle bunches in plasmas
We explore the role of the background plasma ion motion in self-modulated
plasma wakefield accelerators. We employ J. Dawson's plasma sheet model to
derive expressions for the transverse plasma electric field and ponderomotive
force in the narrow bunch limit. We use these results to determine the on-set
of the ion dynamics, and demonstrate that the ion motion could occur in
self-modulated plasma wakefield accelerators. Simulations show the motion of
the plasma ions can lead to the early suppression of the self-modulation
instability and of the accelerating fields. The background plasma ion motion
can nevertheless be fully mitigated by using plasmas with heavier plasmas.Comment: 23 pages, 6 figure
Spatial-temporal evolution of the current filamentation instability
The spatial-temporal evolution of the purely transverse current filamentation
instability is analyzed by deriving a single partial differential equation for
the instability and obtaining the analytical solutions for the spatially and
temporally growing current filament mode. When the beam front always encounters
fresh plasma, our analysis shows that the instability grows spatially from the
beam front to the back up to a certain critical beam length; then the
instability acquires a purely temporal growth. This critical beam length
increases linearly with time and in the non-relativistic regime it is
proportional to the beam velocity. In the relativistic regime the critical
length is inversely proportional to the cube of the beam Lorentz factor
. Thus, in the ultra-relativistic regime the instability
immediately acquires a purely temporal growth all over the beam. The analytical
results are in good agreement with multidimensional particle-in-cell
simulations performed with OSIRIS. Relevance of current study to recent and
future experiments on fireball beams is also addressed
Extraordinary magnetoresistance in graphite: experimental evidence for the time-reversal symmetry breaking
The ordinary magnetoresistance (MR) of doped semiconductors is positive and
quadratic in a low magnetic field, B, as it should be in the framework of the
Boltzmann kinetic theory or in the conventional hopping regime. We observe an
unusual highly-anisotropic in-plane MR in graphite, which is neither quadratic
nor always positive. In a certain current direction MR is negative and linear
in B in fields below a few tens of mT with a crossover to a positive MR at
higher fields, while in a perpendicular current direction we observe a giant
super-linear and positive MR. These extraordinary MRs are respectively
explained by a hopping magneto-conductance via non-zero angular momentum
orbitals, and by the magneto-conductance of inhomogeneous media. The linear
orbital NMR is a unique signature of the broken time-reversal symmetry (TRS) in
graphite. While some local paramagnetic centers could be responsible for the
broken TRS, the observed large diamagnetism suggests a more intriguing
mechanism of this breaking, involving superconducting clusters with
unconventional (chiral) order parameters and spontaneously generated
normal-state current loops in graphite.Comment: 4 pages, 5 figure
Slavnov-Taylor identities for noncommutative QED
In this work we present an analysis of the one-loop Slavnov-Taylor identities
in noncommutative QED. The vectorial fermion-photon and the triple photon
vertex functions were studied, with the conclusion that no anomalies arise.Comment: 24 pages, revtex4, v2: typos correcte
- …