74,366 research outputs found

    Magnetic monopole and string excitations in a two-dimensional spin ice

    Full text link
    We study the magnetic excitations of a square lattice spin-ice recently produced in an artificial form, as an array of nanoscale magnets. Our analysis, based upon the dipolar interaction between the nanomagnetic islands, correctly reproduces the ground-state observed experimentally. In addition, we find magnetic monopole-like excitations effectively interacting by means of the usual Coulombic plus a linear confining potential, the latter being related to a string-like excitation binding the monopoles pairs, what indicates that the fractionalization of magnetic dipoles may not be so easy in two dimensions. These findings contrast this material with the three-dimensional analogue, where such monopoles experience only the Coulombic interaction. We discuss, however, two entropic effects that affect the monopole interactions: firstly, the string configurational entropy may loose the string tension and then, free magnetic monopoles should also be found in lower dimensional spin ices; secondly, in contrast to the string configurational entropy, an entropically driven Coulomb force, which increases with temperature, has the opposite effect of confining the magnetic defects.Comment: 8 pages. Accepted by Journal of Applied Physics (2009

    Scale insects (Hemiptera: Coccoidea) of ornamental plants from Sao Carlos, Sao Paulo, Brazil

    Get PDF
    A list of 35 scale insects collected from 72 ornamental plant species in Sao Carlos, Sao Paulo, Brazil is provided. Regarding host specificity, 30 scale insects were polyphagous, 4 oligophagous, and 1 monophagous. A total of 102 coccoid/plant associations are recorded, 29 of which are new host records for the species; 60 are new host records for the species in Brazil. Pulvinaria urbicola Cockerell, 1893 (Coccidae), Phenacoccus similis Granara de Willink, 1983 (Pseudococcidae), and Orthezia molinarii (Morrison, 1952) (Ortheziidae) are recorded for the first time in Brazil. In addition, we describe the injury caused by scale insects on ornamental plants

    Ion motion in the wake driven by long particle bunches in plasmas

    Get PDF
    We explore the role of the background plasma ion motion in self-modulated plasma wakefield accelerators. We employ J. Dawson's plasma sheet model to derive expressions for the transverse plasma electric field and ponderomotive force in the narrow bunch limit. We use these results to determine the on-set of the ion dynamics, and demonstrate that the ion motion could occur in self-modulated plasma wakefield accelerators. Simulations show the motion of the plasma ions can lead to the early suppression of the self-modulation instability and of the accelerating fields. The background plasma ion motion can nevertheless be fully mitigated by using plasmas with heavier plasmas.Comment: 23 pages, 6 figure

    Spatial-temporal evolution of the current filamentation instability

    Get PDF
    The spatial-temporal evolution of the purely transverse current filamentation instability is analyzed by deriving a single partial differential equation for the instability and obtaining the analytical solutions for the spatially and temporally growing current filament mode. When the beam front always encounters fresh plasma, our analysis shows that the instability grows spatially from the beam front to the back up to a certain critical beam length; then the instability acquires a purely temporal growth. This critical beam length increases linearly with time and in the non-relativistic regime it is proportional to the beam velocity. In the relativistic regime the critical length is inversely proportional to the cube of the beam Lorentz factor γ0b\gamma_{0b}. Thus, in the ultra-relativistic regime the instability immediately acquires a purely temporal growth all over the beam. The analytical results are in good agreement with multidimensional particle-in-cell simulations performed with OSIRIS. Relevance of current study to recent and future experiments on fireball beams is also addressed

    Extraordinary magnetoresistance in graphite: experimental evidence for the time-reversal symmetry breaking

    Full text link
    The ordinary magnetoresistance (MR) of doped semiconductors is positive and quadratic in a low magnetic field, B, as it should be in the framework of the Boltzmann kinetic theory or in the conventional hopping regime. We observe an unusual highly-anisotropic in-plane MR in graphite, which is neither quadratic nor always positive. In a certain current direction MR is negative and linear in B in fields below a few tens of mT with a crossover to a positive MR at higher fields, while in a perpendicular current direction we observe a giant super-linear and positive MR. These extraordinary MRs are respectively explained by a hopping magneto-conductance via non-zero angular momentum orbitals, and by the magneto-conductance of inhomogeneous media. The linear orbital NMR is a unique signature of the broken time-reversal symmetry (TRS) in graphite. While some local paramagnetic centers could be responsible for the broken TRS, the observed large diamagnetism suggests a more intriguing mechanism of this breaking, involving superconducting clusters with unconventional (chiral) order parameters and spontaneously generated normal-state current loops in graphite.Comment: 4 pages, 5 figure

    Slavnov-Taylor identities for noncommutative QED4_4

    Full text link
    In this work we present an analysis of the one-loop Slavnov-Taylor identities in noncommutative QED4_4. The vectorial fermion-photon and the triple photon vertex functions were studied, with the conclusion that no anomalies arise.Comment: 24 pages, revtex4, v2: typos correcte
    corecore