79,617 research outputs found
Doubly-periodic array of bubbles in a Hele-Shaw cell
Exact solutions are presented for a doubly-periodic array of steadily moving
bubbles in a Hele-Shaw cell when surface tension is neglected. It is assumed
that the bubbles either are symmetrical with respect to the channel centreline
or have fore-and-aft symmetry, or both, so that the relevant flow domain can be
reduced to a simply connected region. By using conformal mapping techniques, a
general solution with any number of bubbles per unit cell is obtained in
integral form. Several examples are given, including solutions for multi-file
arrays of bubbles in the channel geometry and doubly-periodic solutions in an
unbounded cell.Comment: 15 pages, 12 figure
Liquid mixtures involving fluorinated alcohols: The equation of state (p, r, T, x) of (Ethanol + Trifluoroethanol) Experimental and Simulation
Liquid mixtures involving fluorinated alcohols:
The equation of state (p, r, T, x) of (Ethanol + Trifluoroethanol)
Experimental and Simulation
Pedro Duartea, DjĂŞide Rodriguesa, Marcelo Silvaa, Pedro Morgadoa,
LuĂs Martinsa,b and Eduardo J. M. Filipea*
aCentro de QuĂmica Estrutural, Instituto Superior TĂ©cnico, 1049-001 Lisboa, Portugal
bCentro de QuĂmica de Évora, Universidade de Évora, 7000-671 Évora, Portugal
Fluorinated alcohols are substances with unique properties and high technological value in the pharmaceutical and chemical industries. Trifluoroethanol (TFE), in particular, displays a number of unusual properties as a solvent. For example, it dissolves nylon at room temperature and is effectively used as solvent in bioengineering. The presence of the three fluorines atoms gives the alcohol a high ionization constant, strong hydrogen bonding capability and stability at high temperatures.
In the pharmaceutical industry, TFE finds use as the major raw material for the production of inhalation anesthetics. Mixtures of TFE and water (known as Fluorinols®) are used as working fluids for Rankine cycle heat engines for terrestrial and space applications, as a result of a unique combination of physical and thermodynamic properties such as high thermal efficiency and excellent turbine expansion characteristics.
Environmentally, TFE is a CFC substitute with an acceptable short lifetime and with small ozone depletion potential. Additionally, TFE is known to induce conformational changes in proteins and it is used as a co-solvent to analyze structural features of partially folded states.
The (ethanol + TFE) system displays an interesting and peculiar behaviour, combining a negative azeotrope with high positive excess volumes.
In this work, liquid mixtures of (ethanol + TFE) were investigated. The densities of the mixtures were measured as a function of composition between 278K and 338K and at pressures up to 700 bar. The corresponding excess volumes as a function of temperature and pressure, the isothermal compressibilities and thermal expansivities were calculated from the experimental results. The mixtures are highly non-ideal with excess volumes ranging from 0.8 - 1.0 cm3mol-1.
Finally, molecular dynamic simulations were performed to model and interpret the experimental results. The Trappe force field was used to simulate the (TFE + ethanol) mixtures and calculate the corresponding excess volumes. The simulation results are able to reproduce the correct sign and order of magnitude of the experimental VE without fitting to the experimental data. Furthermore, the simulations suggest the presence of a particular type of hydrogen bridge between ethanol and TFE, that can help to rationalize the experimental results
One-magnon Raman scattering in La(2)CuO(4): the origin of the field-induced mode
We investigate the one-magnon Raman scattering in the layered
antiferromagnetic La(2)CuO(4) compound. We find that the Raman signal is
composed by two one-magnon peaks: one in the B1g channel, corresponding to the
Dzyaloshinskii-Moryia (DM) mode, and another in the B3g channel, corresponding
to the XY mode. Furthermore, we show that a peak corresponding to the XY mode
can be induced in the planar (RR) geometry when a magnetic field is applied
along the easy axis for the sublattice magnetization. The appearance of such
field-induced mode (FIM) signals the existence of a new magnetic state above
the Neel temperature T_N, where the direction of the weak-ferromagnetic moment
(WFM) lies within the CuO(2) planes.Comment: 4 pages, 3 figure
Experimental Monte Carlo Quantum Process Certification
Experimental implementations of quantum information processing have now
reached a level of sophistication where quantum process tomography is
impractical. The number of experimental settings as well as the computational
cost of the data post-processing now translates to days of effort to
characterize even experiments with as few as 8 qubits. Recently a more
practical approach to determine the fidelity of an experimental quantum process
has been proposed, where the experimental data is compared directly to an ideal
process using Monte Carlo sampling. Here we present an experimental
implementation of this scheme in a circuit quantum electrodynamics setup to
determine the fidelity of two qubit gates, such as the cphase and the cnot
gate, and three qubit gates, such as the Toffoli gate and two sequential cphase
gates
Parabolic dunes in north-eastern Brazil
In this work we present measurements of vegetation cover over parabolic dunes
with different degree of activation along the north-eastern Brazilian coast. We
are able to extend the local values of the vegetation cover density to the
whole dune by correlating measurements with the gray-scale levels of a high
resolution satellite image of the dune field. The empirical vegetation
distribution is finally used to validate the results of a recent continuous
model of dune motion coupling sand erosion and vegetation growth.Comment: 18 pages, 14 figures, aubmitted to Geomorpholog
- …