813 research outputs found

    Chirality sensitive effect on surface states in chiral p-wave superconductors

    Full text link
    We study the local density of states at the surface of a chiral p-wave superconductor in the presence of a weak magnetic field. As a result, the formation of low-energy Andreev bound states is either suppressed or enhanced by an applied magnetic field, depending on its orientation with respect to the chirality of the p-wave superconductor. Similarly, an Abrikosov vortex, which is situated not too far from the surface, leads to a zero-energy peak of the density of states, if its chirality is the same as that of the superconductor, and to a gap structure for the opposite case. We explain the underlying principle of this effect and propose a chirality sensitive test on unconventional superconductors.Comment: 4 pages, 2 figure

    Magnetic response of nonmagnetic impurities in cuprates

    Full text link
    A theory of the local magnetic response of a nonmagnetic impurity in a doped antiferromagnet, as relevant to the normal state in cuprates, is presented. It is based on the assumption of the overdamped collective mode in the bulk system and on the evidence, that equal-time spin correlations are only weakly renormalized in the vicinity of the impurity. The theory relates the Kondo-like behavior of the local susceptibility to the anomalous temperature dependence of the bulk magnetic susceptibility, where the observed increase of the Kondo temperature with doping reflects the crossover to the Fermi liquid regime and the spatial distribution of the magnetization is given by bulk antiferromagnetic correlations.Comment: 5 pages, 3 figure

    Effect of spin-orbit coupling on zero-conductance resonances in asymmetrically coupled one-dimensional rings

    Full text link
    The influence of Rashba spin-orbit coupling on zero conductance resonances appearing in one dimensional ring asymmetrically coupled to two leads is investigated. For this purpose, the transmission function of the corresponding one-electron scattering problem is derived analytically and analyzed in the complex energy plane with focus on the zero-pole structure characteristic of transmission (anti)resonances. The lifting of real conductance zeros due to spin-orbit coupling in the asymmetric Aharonov-Casher (AC) ring is related to the breaking of spin reversal symmetry in analogy to the time-reversal symmetry breaking in the asymmetric Aharonov-Bohm (AB) ring.Comment: 10 pages, 11 figure

    Spin, charge and orbital fluctuations in a multi-orbital Mott insulator

    Full text link
    The two-orbital degenerate Hubbard model with distinct hopping integrals is studied by combining dynamical mean-field theory with quantum Monte Carlo simulations. The role of orbital fluctuations for the nature of the Mott transition is elucidated by examining the temperature dependence of spin, charge and orbital susceptibilities as well as the one-particle spectral function. We also consider the effect of the hybridization between the two orbitals, which is important particularly close to the Mott transition points. The introduction of the hybridization induces orbital fluctuations, resulting in the formation of a Kondo-like heavy-fermion behavior, similarly to ff electron systems, but involving electrons in bands of comparable width.Comment: 8 pages, 9 figure

    Quasiparticle Dynamics in the Kondo Lattice Model at Half Filling

    Full text link
    We study spectral properties of quasiparticles in the Kondo lattice model in one and two dimensions including the coherent quasiparticle dispersions, their spectral weights and the full two-quasiparticle spectrum using a cluster expansion scheme. We investigate the evolution of the quasiparticle band as antiferromagnetic correlations are enhanced towards the RKKY limit of the model. In both the 1D and the 2D model we find that a repulsive interaction between quasiparticles results in a distinct antibound state above the two-quasiparticle continuum. The repulsive interaction is correlated with the emerging antiferromagnetic correlations and can therefore be associated with spin fluctuations. On the square lattice, the antibound state has an extended s-wave symmetry.Comment: 8 pages, 11 figure

    Competitions in layered ruthenates: ferro- vs. antiferromagnetism and triplet vs. singlet pairing

    Full text link
    Ru based perovskites demonstrate an amazing richness in their magnetic properties, including 3D and quasi-2D ferromagnetism, antiferromagnetism, and unconventional superconductivity. Tendency to ferromagnetism, stemming from the unusually large involvement of O in magnetism in ruthenates, leads to ferromagnetic spin fluctuations in Sr2RuO4 and eventually to p-wave superconductivity. A related compound Ca2RuO4 was measured to be antiferromagnetic, suggesting a possibility of antiferromagnetic fluctuations in Sr2RuO4 as well. Here we report first principles calculations that demonstrate that in both compounds the ferro- and antiferromagnetic fluctuations coexist, leading to an actual instability in Ca2RuO4 and to a close competition between p-wave and d-wave superconducting symmetries in Sr2RuO4. The antiferromagnetism in this system appears to be mostly related with the nesting, which is the strongest at Q=(2pi/3,2pi/3,0). Surprisingly, for the Fermiology of Sr2RuO4 the p-wave state wins over the d-wave one everywhere except in close vicinity of the antiferromagnetic instability. The most stable state within the d-wave channel has vanishing order parameter at one out of three Fermi surfaces in Sr2RuO4, while in the p channel its amplitude is comparable at all three of them.Comment: 4 Revtex pages with 4 embedded postscript figure. Some figures are color, but should look OK in B&W as wel

    Probing the d_{x2-y2}-wave Pomeranchuk instability by ultrasound

    Full text link
    Selection rules of ultrasound attenuation and sound velocity renormalization are analyzed in view of their potential application to identify Pomeranchuk instabilities (electronic nematic phase). It is shown that the transverse sound attenuation along [110] direction is enhanced by the Fermi surface fluctuations near a d_{x2-y2}-wave Pomeranchuk instability, while the attenuation along [100] direction remains unaffected. Moreover the fluctuation regime above the instability is analyzed by means of a self-consistent renormalization scheme. The results could be applied directly to Sr3Ru2O7 which is a potential candidate for a Pomeranchuk instability at its metamagnetic transition in strong magnetic fields.Comment: 14 pages, 12 figure
    • …
    corecore