825 research outputs found

    Transmission Phase Through Two Quantum Dots Embedded in a Four-Terminal Quantum Ring

    Full text link
    We use the Aharonov-Bohm effect in a four-terminal ring based on a Ga[Al]As heterostructure for the measurement of the relative transmission phase. In each of the two interfering paths we induce a quantum dot. The number of electrons in the two dots can be controlled independently. The transmission phase is measured as electrons are added to or taken away from the individual quantum dots.Comment: 3 pages, 4 figure

    Magnetic ordering in a doped frustrated spin-Peierls system

    Full text link
    Based on a model of a quasi-one dimensional spin-Peierls system doped with non-magnetic impurities, an effective two-dimensional Hamiltonian of randomly distributed S=1/2 spins interacting via long-range pair-wise interaction is studied using a stochastic series expansion quantum Monte Carlo method. The susceptibility shows Curie-like behavior at the lowest temperatures reached although the staggered magnetisation is found to be finite for T→0T\to 0. The doping dependance of the corresponding three-dimensional Neel temperature is also computed.Comment: Published version, 4 pages, 5 figure

    Spin, charge and orbital fluctuations in a multi-orbital Mott insulator

    Full text link
    The two-orbital degenerate Hubbard model with distinct hopping integrals is studied by combining dynamical mean-field theory with quantum Monte Carlo simulations. The role of orbital fluctuations for the nature of the Mott transition is elucidated by examining the temperature dependence of spin, charge and orbital susceptibilities as well as the one-particle spectral function. We also consider the effect of the hybridization between the two orbitals, which is important particularly close to the Mott transition points. The introduction of the hybridization induces orbital fluctuations, resulting in the formation of a Kondo-like heavy-fermion behavior, similarly to ff electron systems, but involving electrons in bands of comparable width.Comment: 8 pages, 9 figure

    Magnetic field dependent transmission phase of a double dot system in a quantum ring

    Full text link
    The Aharonov-Bohm effect is measured in a four-terminal open ring geometry based on a Ga[Al]As heterostructure. Two quantum dots are embedded in the structure, one in each of the two interfering paths. The number of electrons in the two dots can be controlled independently. The transmission phase is measured as electrons are added to or taken away from the individual quantum dots. Although the measured phase shifts are in qualitative agreement with theoretical predictions, the phase evolution exhibits unexpected dependence on the magnetic field. For example, phase lapses are found only in certain ranges of magnetic field.Comment: 5 pages, 4 figure

    Electronic properties of antidot lattices fabricated by atomic force lithography

    Full text link
    Antidot lattices were fabricated by atomic force lithography using local oxidation. High quality finite 20 x20 lattices are demonstrated with periods of 300 nm. The low temperature magnetoresistance shows well developed commensurability oscillations as well as a quenching of the Hall effect around zero magnetic field. In addition, we find B periodic oscillations superimposed on the classical commensurability peaks at temperatures as high as 1.7 K. These observations indicate the high electronic quality of our samples.Comment: Appl. Phys. Lett., in prin

    Phenomenological theory of the 3 Kelvin phase in Sr2RuO4

    Full text link
    We model the 3K-phase of Sr2RuO4 with Ru-metal inclusion as interface state with locally enhanced transition temperatures. The resulting 3K-phase must have a different pairing symmetry than the bulk phase of Sr2RuO4, because the symmetry at the interface is lower than in the bulk. It is invariant under time reversal and a second transition, in general, above the onset of bulk superconductivity is expected where time reversal symmetry is broken. The nucleation of the 3K-phase exhibits a ``capillary effect'' which can lead to frustration phenomena for the superconducting states on different Ru-inclusions. Furthermore, the phase structure of the pair wave function gives rise to zero-energy quasiparticle states which would be visible in quasiparticle tunneling spectra. Additional characteristic properties are associated with the upper critical field Hc2. The 3K-phase has a weaker anisotropy of Hc2 between the inplane and z-axis orientation than the bulk superconducting phase. This is connected with the more isotropic nature Ru-metal which yields a stronger orbital depairing effect for the inplane magnetic field than in the strongly layered Sr$_2RuO4. An anomalous temperature dependence for the z-axis critical field is found due to the coupling of the magnetic field to the order parameter texture at the interface. Various other experiments are discussed and new measurements are suggested.Comment: 10 pages, 5 figure

    Order by disorder from non-magnetic impurities in a two-dimensional quantum spin liquid

    Full text link
    We consider doping of non-magnetic impurities in the spin-1/2, 1/5-depleted square lattice. This structure, whose undoped phase diagram offers both magnetically ordered and spin-liquid ground states, is realized physically in CaV_4O_9. Doping into the ordered phase results in a progressive loss of order, which becomes complete at the percolation threshold. By contrast, non-magnetic impurities introduced in the spin liquids create a phase of weak but long-ranged antiferromagnetic order coexisting with the gapped state. The latter may be viewed as a true order-by-disorder phenomenon. We study the phase diagram of the doped system by computing the static susceptibility and staggered magnetization using a stochastic series-expansion quantum Monte Carlo technique.Comment: 4 pages, 5 figure

    Spin-ladders with spin gaps: A description of a class of cuprates

    Full text link
    We investigate the magnetic properties of the Cu-O planes in stoichiometric Srn−1_{n-1}Cun+1_{n+1}O2n_{2n} (n=3,5,7,...) which consist of CuO double chains periodically intergrown within the CuO2_2 planes. The double chains break up the two-dimensional antiferromagnetic planes into Heisenberg spin ladders with nr=12(n−1)n_r=\frac{1}{2}(n-1) rungs and nl=12(n+1)n_l=\frac{1}{2}(n+1) legs and described by the usual antiferromagnetic coupling J inside each ladder and a weak and frustrated interladder coupling J′^\prime. The resulting lattice is a new two-dimensional trellis lattice. We first examine the spin excitation spectra of isolated quasi one dimensional Heisenberg ladders which exhibit a gapless spectra when nrn_r is even and nln_l is odd ( corresponding to n=5,9,...) and a gapped spectra when nrn_r is odd and nln_l is even (corresponding to n=3,7,...). We use the bond operator representation of quantum S=12S=\frac{1}{2} spins in a mean field treatment with self-energy corrections and obtain a spin gap of ≈12J\approx \frac{1}{2} J for the simplest single rung ladder (n=3), in agreement with numerical estimates.Comment: 21 pages, 5 figures upon request, REVTEX, ETH-TH/93-3

    Magnon Dispersion in the Field-Induced Magnetically Ordered Phase of TlCuCl3

    Full text link
    The magnetic properties of the interacting dimer system TlCuCl3 are investigated within a bond-operator formulation. The observed field-induced staggered magnetic order perpendicular to the field is described as a Bose condensation of magnons which are linear combinations of dimer singlet and triplet modes. This technique accounts for the magnetization curve and for the field dependence of the magnon dispersion curves observed by high-field neutron scattering measurements.Comment: 4 pages, 4 figures, REVTeX
    • …
    corecore