205 research outputs found
Is Qualitative Research Second Class Science? A Quantitative Longitudinal Examination of Qualitative Research in Medical Journals
Background: Qualitative research appears to be gaining acceptability in medical journals. Yet, little is actually known about the proportion of qualitative research and factors affecting its publication. This study describes the proportion of qualitative research over a 10 year period and correlates associated with its publication. Design: A quantitative longitudinal examination of the proportion of original qualitative research in 67 journals of general medicine during a 10 year period (1998–2007). The proportion of qualitative research was determined by dividing original qualitative studies published (numerator) by all original research articles published (denominator). We used a generalized estimating equations approach to assess the longitudinal association between the proportion of qualitative studies and independent variables (i.e. journals' country of publication and impact factor; editorial/methodological papers discussing qualitative research; and specific journal guidelines pertaining to qualitative research). Findings: A 2.9% absolute increase and 3.4-fold relative increase in qualitative research publications occurred over a 10 year period (1.2% in 1998 vs. 4.1% in 2007). The proportion of original qualitative research was independently and significantly associated with the publication of editorial/methodological papers in the journal (b = 3.688, P = 0.012); and with qualitative research specifically mentioned in guidelines for authors (b = 6.847, P<0.001). Additionally, a higher proportion of qualitative research was associated only with journals published in the UK in comparison to other countries, yet with borderline statistical significance (b = 1.776, P = 0.075). The journals' impact factor was not associated with the publication of qualitative research. Conclusions: Despite an increase in the proportion of qualitative research in medical journals over a 10 year period, the proportion remains low. Journals' policies pertaining to qualitative research, as expressed by the appearance of specific guidelines and editorials/methodological papers on the subject, are independently associated with the publication of original qualitative research; irrespective of the journals' impact factor
Leveraging Rural Energy Investment for Parasitic Disease Control: Schistosome Ova Inactivation and Energy Co-Benefits of Anaerobic Digesters in Rural China
Cooking and heating remain the most energy intensive activities among the world's poor, and thus improved access to clean energies for these tasks has been highlighted as a key requirement of attaining the major objectives of the UN Millennium Development Goals. A move towards clean energy technologies such as biogas systems (which produce methane from human and animal waste) has the potential to provide immediate benefits for the control of neglected tropical diseases. Here, an assessment of the parasitic disease and energy benefits of biogas systems in Sichuan Province, China, is presented, highlighting how the public health sector can leverage the proliferation of rural energy projects for infectious disease control. ova) counted at the influent of two biogas systems were removed in the systems when adjusted for system residence time, an approximate 1-log removal attributable to sedimentation. Combined, these inactivation/removal processes underscore the promise of biogas infrastructure for reducing parasite contamination resulting from nightsoil use. When interviewed an average of 4 years after construction, villagers attributed large changes in fuel usage to the installation of biogas systems. Household coal usage decreased by 68%, wood by 74%, and crop waste by 6%. With reported energy savings valued at roughly 600 CNY per year, 2–3 years were required to recoup the capital costs of biogas systems. In villages without subsidies, no new biogas systems were implemented.Sustainable strategies that integrate rural energy needs and sanitation offer tremendous promise for long-term control of parasitic diseases, while simultaneously reducing energy costs and improving quality of life. Government policies can enhance the financial viability of such strategies by introducing fiscal incentives for joint sanitation/sustainable energy projects, along with their associated public outreach and education programs
Exploring adults’ experiences of sedentary behaviour and participation in nonworkplace interventions designed to reduce sedentary behaviour: a thematic synthesis of qualitative studies
Background: Sedentary behaviour is any waking behaviour characterised by an energy expenditure of ≤1.5 metabolic equivalent of task while in a sitting or reclining posture. Prolonged bouts of sedentary behaviour have been associated with negative health outcomes in all age groups. We examined qualitative research investigating perceptions and experiences of sedentary behaviour and of participation in non-workplace interventions designed to reduce sedentary behaviour in adult populations.
Method: A systematic search of seven databases (MEDLINE, AMED, Cochrane, PsychINFO, SPORTDiscus, CINAHL and Web of Science) was conducted in September 2017. Studies were assessed for methodological quality and a thematic synthesis was conducted. Prospero database ID: CRD42017083436.
Results: Thirty individual studies capturing the experiences of 918 individuals were included. Eleven studies examined experiences and/or perceptions of sedentary behaviour in older adults (typically ≥60 years); ten studies focused on sedentary behaviour in people experiencing a clinical condition, four explored influences on sedentary behaviour in adults living in socio-economically disadvantaged communities, two examined university students’ experiences of sedentary behaviour, two on those of working-age adults, and one focused on cultural influences on sedentary behaviour. Three analytical themes were identified: 1) the impact of different life stages on sedentary behaviour 2) lifestyle factors influencing sedentary behaviour and 3) barriers and facilitators to changing sedentary behaviour.
Conclusions: Sedentary behaviour is multifaceted and influenced by a complex interaction between individual, environmental and socio-cultural factors. Micro and macro pressures are experienced at different life stages and in the context of illness; these shape individuals’ beliefs and behaviour related to sedentariness. Knowledge of sedentary behaviour and the associated health consequences appears limited in adult populations, therefore there is a need for provision of accessible information about ways in which sedentary behaviour reduction can be integrated in people’s daily lives. Interventions targeting a reduction in sedentary behaviour need to consider the multiple influences on sedentariness when designing and implementing interventions
Economic Impacts of Climate Change on Vegetative Agriculture Markets in Israel
We integrate the combined agricultural production effects of forecasted changes in CO2, temperature and precipitation into a multi-regional, country-wide partial equilibrium positive mathematical programming model. By conducting a meta-analysis of 2103 experimental observations from 259 agronomic studies we estimate production functions relating yields to CO2 concentration and temperature for 55 crops. We apply the model to simulate climate change in Israel based on 15 agricultural production regions. Downscaled projections for CO2 concentration, temperature and precipitation were derived from three general circulation models and four representative concentration pathways, showing temperature increase and precipitation decline throughout most of the county during the future periods 2041–2060 and 2061–2080. Given the constrained regional freshwater and non-freshwater quotas, farmers will adapt by partial abandonment of agriculture lands, increasing focus on crops grown in controlled environments at the expense of open-field and rain-fed crops. Both agricultural production and prices decline, leading to reduced agricultural revenues; nevertheless, production costs reduce at a larger extent such that farming profits increase. As total consumer surplus also augments, overall social welfare rises. We find that this outcome is reversed if the positive fertilization effects of increased CO2 concentrations are overlooked
Estimates, trends, and drivers of the global burden of type 2 diabetes attributable to PM2·5 air pollution, 1990–2019: an analysis of data from the Global Burden of Disease Study 2019
Background: Experimental and epidemiological studies indicate an association between exposure to particulate matter (PM) air pollution and increased risk of type 2 diabetes. In view of the high and increasing prevalence of diabetes, we aimed to quantify the burden of type 2 diabetes attributable to PM2·5 originating from ambient and household air pollution. Methods: We systematically compiled all relevant cohort and case-control studies assessing the effect of exposure to household and ambient fine particulate matter (PM2·5) air pollution on type 2 diabetes incidence and mortality. We derived an exposure–response curve from the extracted relative risk estimates using the MR-BRT (meta-regression—Bayesian, regularised, trimmed) tool. The estimated curve was linked to ambient and household PM2·5 exposures from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019, and estimates of the attributable burden (population attributable fractions and rates per 100 000 population of deaths and disability-adjusted life-years) for 204 countries from 1990 to 2019 were calculated. We also assessed the role of changes in exposure, population size, age, and type 2 diabetes incidence in the observed trend in PM2·5-attributable type 2 diabetes burden. All estimates are presented with 95% uncertainty intervals. Findings: In 2019, approximately a fifth of the global burden of type 2 diabetes was attributable to PM2·5 exposure, with an estimated 3·78 (95% uncertainty interval 2·68–4·83) deaths per 100 000 population and 167 (117–223) disability-adjusted life-years (DALYs) per 100 000 population. Approximately 13·4% (9·49–17·5) of deaths and 13·6% (9·73–17·9) of DALYs due to type 2 diabetes were contributed by ambient PM2·5, and 6·50% (4·22–9·53) of deaths and 5·92% (3·81–8·64) of DALYs by household air pollution. High burdens, in terms of numbers as well as rates, were estimated in Asia, sub-Saharan Africa, and South America. Since 1990, the attributable burden has increased by 50%, driven largely by population growth and ageing. Globally, the impact of reductions in household air pollution was largely offset by increased ambient PM2·5. Interpretation: Air pollution is a major risk factor for diabetes. We estimated that about a fifth of the global burden of type 2 diabetes is attributable PM2·5 pollution. Air pollution mitigation therefore might have an essential role in reducing the global disease burden resulting from type 2 diabetes. Funding: Bill & Melinda Gates Foundation
Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019
Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10-14 and 50-54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2.72 (95% uncertainty interval [UI] 2.66-2.79) in 2000 to 2.31 (2.17-2.46) in 2019. Global annual livebirths increased from 134.5 million (131.5-137.8) in 2000 to a peak of 139.6 million (133.0-146.9) in 2016. Global livebirths then declined to 135.3 million (127.2-144.1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2.1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27.1% (95% UI 26.4-27.8) of global livebirths. Global life expectancy at birth increased from 67.2 years (95% UI 66.8-67.6) in 2000 to 73.5 years (72.8-74.3) in 2019. The total number of deaths increased from 50.7 million (49.5-51.9) in 2000 to 56.5 million (53.7-59.2) in 2019. Under-5 deaths declined from 9.6 million (9.1-10.3) in 2000 to 5.0 million (4.3-6.0) in 2019. Global population increased by 25.7%, from 6.2 billion (6.0-6.3) in 2000 to 7.7 billion (7.5-8.0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58.6 years (56.1-60.8) in 2000 to 63.5 years (60.8-66.1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Copyright (C) 2020 The Author(s). Published by Elsevier Ltd.Peer reviewe
- …