6,815 research outputs found
The molecular structure of isocyanic acid from microwave and infra-red absorption spectra
Experimental investigations of the infra-red and microwave spectra of the slightly asymmetric rotor, HNCO, have been made, and the structure of the molecule has been determined
Behavioural clusters and predictors of performance during recovery from stroke
We examined the patterns and variability of recovery post-stroke in multiple behavioral domains. A large cohort of first time stroke patients with heterogeneous lesions was studied prospectively and longitudinally at 1-2 weeks, 3 months and one year post-injury with structural MRI to measure lesion anatomy and in-depth neuropsychological assessment. Impairment was described at all timepoints by a few clusters of correlated deficits. The time course and magnitude of recovery was similar across domains, with change scores largely proportional to the initial deficit and most recovery occurring within the first three months. Damage to specific white matter tracts produced poorer recovery over several domains: attention and superior longitudinal fasciculus II/III, language and posterior arcuate fasciculus, motor and corticospinal tract. Finally, after accounting for the severity of the initial deficit, language and visual memory recovery/outcome was worse with lower education, while the occurrence of multiple deficits negatively impacted attention recovery
Dipole Moment and Electric Quadrupole Effects in HNCO and HNCS
Interaction of the electric quadrupole moment of the nitrogen nucleus with the molecular electric fields of isocyanic and isothiocyanic acids results in a hyperfine splitting of the rotational trnasitions
Tensor products of subspace lattices and rank one density
We show that, if is a subspace lattice with the property that the rank
one subspace of its operator algebra is weak* dense, is a commutative
subspace lattice and is the lattice of all projections on a separable
infinite dimensional Hilbert space, then the lattice is
reflexive. If is moreover an atomic Boolean subspace lattice while is
any subspace lattice, we provide a concrete lattice theoretic description of
in terms of projection valued functions defined on the set of
atoms of . As a consequence, we show that the Lattice Tensor Product Formula
holds for \Alg M and any other reflexive operator algebra and give several
further corollaries of these results.Comment: 15 page
GOING FULL CIRCLE: AN ANALYSIS OF END-USER PERSPECTIVES ON THE IMPLEMENTATION OF THE USMC 360-DEGREE FEEDBACK PROGRAM
The United States Marine Corpsâ counseling and development process requires modernization to remain on the leading edge of talent management and to keep pace with both the public sector and the private sector. The Commandantâs plan, titled Talent Management 2030, states that the Marine Corps will implement a 360-degree feedback program to bridge gaps and to retain the best, brightest, and most capable leaders. The purpose of our research is to analyze end-user perspectives to gauge support for 360-degree feedback in both developmental and evaluative capacities and offer recommendations for who should receive feedback and/or when feedback should be distributed. The sample population for our survey study is comprised of Marine Officers assigned to the Naval Postgraduate School. Most of the sample population consists of captains and majors between the ages of 26 and 35, with 6 to 15 years of military service. The results of our survey suggest that there is support for 360-degree feedback, particularly when utilized in a developmental capacity. Our analysis suggests that 360-degree feedback should be targeted toward junior or mid-career company grade officers and should relate to a significant occasion, such as advancement to a position with substantial oversight or influence. Our implementation and scaling recommendations consider civilian organization âbest practicesâ and try to achieve meaningful results, enable growth, and avoid survey fatigue.Major, United States Marine CorpsMajor, United States Marine CorpsCaptain, United States Marine CorpsApproved for public release. Distribution is unlimited
Higher Structures in M-Theory
The key open problem of string theory remains its non-perturbative completion
to M-theory. A decisive hint to its inner workings comes from numerous
appearances of higher structures in the limits of M-theory that are already
understood, such as higher degree flux fields and their dualities, or the
higher algebraic structures governing closed string field theory. These are all
controlled by the higher homotopy theory of derived categories, generalised
cohomology theories, and -algebras. This is the introductory chapter
to the proceedings of the LMS/EPSRC Durham Symposium on Higher Structures in
M-Theory. We first review higher structures as well as their motivation in
string theory and beyond. Then we list the contributions in this volume,
putting them into context.Comment: 22 pages, Introductory Article to Proceedings of LMS/EPSRC Durham
Symposium Higher Structures in M-Theory, August 2018, references update
Bioluminescence intensity modeling and sampling strategy optimization
Author Posting. © American Meteorological Society 2005. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 22 (2005): 1267â1281, doi:10.1175/JTECH1760.1.The focus of this paper is on the development of methodology for short-term (1â3 days) oceanic bioluminescence (BL) predictions and the optimization of spatial and temporal bioluminescence sampling strategies. The approach is based on predictions of bioluminescence with an advectionâdiffusionâreaction (tracer) model with velocities and diffusivities from a circulation model. In previous research, it was shown that short-term changes in some of the salient features in coastal bioluminescence can be explained and predicted by using this approach. At the same time, it was demonstrated that optimization of bioluminescence sampling prior to the forecast is critical for successful short-term BL predictions with the tracer model. In the present paper, the adjoint to the tracer model is used to study the sensitivity of the modeled bioluminescence distributions to the sampling strategies for BL. The locations and times of bioluminescence sampling prior to the forecast are determined by using the adjoint-based sensitivity maps. The approach is tested with bioluminescence observations collected during August 2000 and 2003 in the Monterey Bay, California, area. During August 2000, BL surveys were collected during a strong wind relaxation event, while in August 2003, BL surveys were conducted during an extended (longer than a week) upwelling-favorable event. The numerical bioluminescence predictability experiments demonstrated a close agreement between observed and model-predicted short-term spatial and temporal changes of the coastal bioluminescence.This work has been supported by
the Ocean Optics and Biology and Physical Oceanography
Programs of the Office of Naval Research. Shulmanâs
support is through the NRL âUse of a Circulation
Model to Enhance Predictability of Bioluminescence
in the Coastal Oceanâ project sponsored by the
Office of Naval Research
Structural Disconnections Explain Brain Network Dysfunction after Stroke
Stroke causes focal brain lesions that disrupt functional connectivity (FC), a measure of activity synchronization, throughout distributed brain networks. It is often assumed that FC disruptions reflect damage to specific cortical regions. However, an alternative explanation is that they reflect the structural disconnection (SDC) of white matter pathways. Here, we compare these explanations using data from 114 stroke patients. Across multiple analyses, we find that SDC measures outperform focal damage measures, including damage to putative critical cortical regions, for explaining FC disruptions associated with stroke. We also identify a core mode of structure-function covariation that links the severity of interhemispheric SDCs to widespread FC disruptions across patients and that correlates with deficits in multiple behavioral domains. We conclude that a lesion\u27s impact on the structural connectome is what determines its impact on FC and that interhemispheric SDCs may play a particularly important role in mediating FC disruptions after stroke
Entry in the ADHD drugs market: Welfare impact of generics and me-toos
Recent decades have seen a growth in treatments for attention deficit hyperactivity disorder (ADHD) including many branded and generic drugs. In the early 2000's, new drug entry dramatically altered market shares. We estimate a demand system for ADHD drugs and assess the welfare impact of new drugs. We find that entry induced large welfare gains by reducing prices of substitute drugs, and by providing alternative delivery mechanisms for existing molecules. Our results suggest that the success of follow-on patented drugs may come from unanticipated innovations like delivery mechanisms, a factor ignored by proposals to retard new follow-on drug approvals
Adipocyte JAK2 Regulates Hepatic Insulin Sensitivity Independently of Body Composition, Liver Lipid Content, and Hepatic Insulin Signaling.
Disruption of hepatocyte growth hormone (GH) signaling through disruption of Jak2 (JAK2L) leads to fatty liver. Previously, we demonstrated that development of fatty liver depends on adipocyte GH signaling. We sought to determine the individual roles of hepatocyte and adipocyte Jak2 on whole-body and tissue insulin sensitivity and liver metabolism. On chow, JAK2L mice had hepatic steatosis and severe whole-body and hepatic insulin resistance. However, concomitant deletion of Jak2 in hepatocytes and adipocytes (JAK2LA) completely normalized insulin sensitivity while reducing liver lipid content. On high-fat diet, JAK2L mice had hepatic steatosis and insulin resistance despite protection from diet-induced obesity. JAK2LA mice had higher liver lipid content and no protection from obesity but retained exquisite hepatic insulin sensitivity. AKT activity was selectively attenuated in JAK2L adipose tissue, whereas hepatic insulin signaling remained intact despite profound hepatic insulin resistance. Therefore, JAK2 in adipose tissue is epistatic to liver with regard to insulin sensitivity and responsiveness, despite fatty liver and obesity. However, hepatocyte autonomous JAK2 signaling regulates liver lipid deposition under conditions of excess dietary fat. This work demonstrates how various tissues integrate JAK2 signals to regulate insulin/glucose and lipid metabolism
- âŠ