98 research outputs found

    7α-Hydroxylation of 26-hydroxycholesterol, 3β-hydroxy-5-cholestenoic acid and 3β-hydroxy-5-cholenoic acid by cytochrome P-450 in pig liver microsomes

    Get PDF
    AbstractPig liver microsomes were found to catalyze the 7α-hydroxylation of several potential bile acid precursors besides cholesterol. 26-Hydroxycholesterol, 3β-hydroxy-5-cholestenoic acid and 3β-hydroxy-5-cholenoic acid were all efficiently converted into the 7α-hydroxylated products. Two cytochrome P-450 fractions showing 7α-hydroxylase activity could be isolated. One fraction catalyzed 7α-hydroxylation of 26-hydroxycholesterol. 3β-hydroxy-5-cholestenoic acid and 3β-hydroxy-5-cholenoic acid but was inactive towards cholesterol. The other fraction catalyzed 7α-hydroxylation of cholesterol in addition to the other substrates. 26-Hydroxycholesterol in equimolar concentration did not inhibit the cholesterol 7α-hydroxylase activity of this fraction. It is concluded that liver microsomes contain a cytochrome P-450 catalyzing 7α-hydroxylation of 26-hydroxycholesterol, 3β-hydroxy-5-cholestenoic acid and 3β-hydroxy-5-cholenoic acid. The results indicate that this cytochrome P-450 is different from that catalyzing 7α-hydroxylation of cholesterol

    Cytoprotective Role of Nrf2 in Electrical Pulse Stimulated C2C12 Myotube

    Get PDF
    Regular physical exercise is central to a healthy lifestyle. However, exercise-related muscle contraction can induce reactive oxygen species and reactive nitrogen species (ROS/RNS) production in skeletal muscle. The nuclear factor-E2-related factor-2 (Nrf2) transcription factor is a cellular sensor for oxidative stress. Regulation of nuclear Nrf2 signaling regulates antioxidant responses and protects organ structure and function. However, the role of Nrf2 in exercise- or contraction-induced ROS/RNS production in skeletal muscle is not clear. In this study, using differentiated C2C12 cells and electrical pulse stimulation (EPS) of muscle contraction, we explored whether Nrf2 plays a role in the skeletal muscle response to muscle contraction-induced ROS/RNS. We found that EPS (40 V, 1 Hz, 2 ms) stimulated ROS/RNS accumulation and Nrf2 activation. We also showed that expression of NQO1, HO-1 and GCLM increased after EPS-induced muscle contraction and was remarkably suppressed in cells with Nrf2 knockdown. We also found that the antioxidant N-acetylcysteine (NAC) significantly attenuated Nrf2 activation after EPS, whereas the nitric oxide synthetase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME) did not. Furthermore, Nrf2 knockdown after EPS markedly decreased ROS/RNS redox potential and cell viability and increased expression of the apoptosis marker Annexin V in C2C12 myotubes. These results indicate that Nrf2 activation and expression of Nrf2 regulated-genes protected muscle against the increased ROS caused by EPS-induced muscle contraction. Thus, our findings suggest that Nrf2 may be a key factor for preservation of muscle function during muscle contraction

    Exercise training enhances in vivo clearance of endotoxin and attenuates inflammatory responses by potentiating Kupffer cell phagocytosis

    Get PDF
    The failure of Kupffer cells (KCs) to remove endotoxin is an important factor in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). In this study, the effects of exercise training on KC function were studied in terms of in vivo endotoxin clearance and inflammatory responses. Mice were allocated into rest and exercise groups. KC bead phagocytic capacity and plasma steroid hormone levels were determined following exercise training. Endotoxin and inflammatory cytokine levels in plasma were determined over time following endotoxin injection. KC bead phagocytic capacity was potentiated and clearance of exogenously-injected endotoxin was increased in the exercise group. Inflammatory cytokine (TNF-α and IL-6) levels were lower in the exercise group. We found that only DHEA was increased in the plasma of the exercise group. In an in vitro experiment, the addition of DHEA to RAW264.7 cells increased bead phagocytic capacity and attenuated endotoxin-induced inflammatory responses. These results suggest that exercise training modulates in vivo endotoxin clearance and inflammatory responses in association with increased DHEA production. These exercise-induced changes in KC capacity may contribute to a slowing of disease progression in NAFLD patients

    Construction of a combinatorial pipeline using two somatic variant calling methods for whole exome sequence data of gastric cancer

    Get PDF
    High-throughput next-generation sequencing is a powerful tool to identify the genotypic landscapes of somatic variants and therapeutic targets in various cancers including gastric cancer, forming the basis for personalized medicine in the clinical setting. Although the advent of many computational algorithms leads to higher accuracy in somatic variant calling, no standardmethod exists due to the limitations of each method. Here, we constructed a new pipeline. We combined two different somatic variant callers with different algorithms, Strelka and VarScan 2, and evaluated performance using whole exome sequencing data obtained from 19 Japanese cases with gastric cancer (GC) ; then, we characterized these tumors based on identified driver molecular alterations. More single nucleotide variants (SNVs) and small insertions/deletions were detected by Strelka and VarScan 2, respectively. SNVs detected by both tools showed higher accuracy for estimating somatic variants compared with those detected by only one of the two tools and accurately showed the mutation signature and mutations of driver genes reported for GC. Our combinatorial pipeline may have an advantage in detection of somaticmutations in GC andmay be useful for further genomic characterization of Japanese patients with GC to improve the efficacy of GC treatments

    Exercise habituation is effective for improvement of periodontal disease status: a prospective intervention study

    Get PDF
    Background and purpose: Periodontal disease is closely related to lifestyle-related diseases and obesity. It is widely known that moderate exercise habits lead to improvement in lifestyle-related diseases and obesity. However, little research has been undertaken into how exercise habits affect periodontal disease. The purpose of this study was to examine the effect of exercise habits on periodontal diseases and metabolic pathology.Methods: We conducted a prospective intervention research for 12 weeks. The subjects were 71 obese men who participated in an exercise and/or dietary intervention program. Fifty subjects were assigned to exercise interventions (exercise intervention group) and 21 subjects were assigned to dietary interventions (dietary intervention group). This research was conducted before and after each intervention program.Results: In the exercise intervention group, the number of teeth with a probing pocket depth (PPD) ≥4 mm significantly decreased from 14.4% to 5.6% (P<0.001), and the number of teeth with bleeding on probing (BOP) significantly decreased from 39.8% to 14.4% (P<0.001). The copy counts of Tannerella forsythia and Treponema denticola decreased significantly (P=0.001). A positive correlation was found between the change in the copy count of T. denticola and the number of teeth with PPD ≥4 mm (P=0.003) and the number of teeth with BOP (P=0.010). A positive correlation was also found between the change in the copy count of T. denticola and body weight (P=0.008), low-density lipoprotein cholesterol (P=0.049), and fasting insulin (P=0.041). However, in the dietary intervention group the copy count of T. denticola decreased significantly (P=0.007) and there was no correlation between the number of periodontal disease-causing bacteria and PPD and BOP.Conclusion: Our results are the first to show that exercise might contribute to improvements in periodontal disease

    Tumor-promoting function and prognostic significance of the RNA-binding protein T-cell intracellular antigen-1 in esophageal squamous cell carcinoma.

    Get PDF
    T-cell intracellular antigen-1 (TIA1) is an RNA-binding protein involved in many regulatory aspects of mRNA metabolism. Here, we report previously unknown tumor-promoting activity of TIA1, which seems to be associated with its isoform-specific molecular distribution and regulation of a set of cancer-related transcripts, in esophageal squamous cell carcinoma (ESCC). Immunohistochemical overexpression of TIA1 ectopically localized in the cytoplasm of tumor cells was an independent prognosticator for worse overall survival in a cohort of 143 ESCC patients. Knockdown of TIA1 inhibited proliferation of ESCC cells. By exogenously introducing each of two major isoforms, TIA1a and TIA1b, only TIA1a, which was localized to both the nucleus and cytoplasm, promoted anchorage-dependent and anchorage-independent ESCC cell proliferation. Ribonucleoprotein immunoprecipitation, followed by microarray analysis or massive-parallel sequencing, identified a set of TIA1-binding mRNAs, including SKP2 and CCNA2. TIA1 increased SKP2 and CCNA2 protein levels through the suppression of mRNA decay and translational induction, respectively. Our findings uncover a novel oncogenic function of TIA1 in esophageal tumorigenesis, and implicate its use as a marker for prognostic evaluation and as a therapeutic target in ESCC

    Deletion of both p62 and Nrf2 spontaneously results in the development of nonalcoholic steatohepatitis

    Get PDF
    Nonalcoholic steatohepatitis (NASH) is one of the leading causes of chronic liver disease worldwide. However, details of pathogenetic mechanisms remain unknown. Deletion of both p62/Sqstm1 and Nrf2 genes spontaneously led to the development of NASH in mice fed a normal chow and was associated with liver tumorigenesis. The pathogenetic mechanism (s) underlying the NASH development was investigated in p62:Nrf2 double-knockout (DKO) mice. DKO mice showed massive hepatomegaly and steatohepatitis with fat accumulation and had hyperphagia-induced obesity coupled with insulin resistance and adipokine imbalance. They also showed dysbiosis associated with an increased proportion of gram-negative bacteria species and an increased lipopolysaccharide (LPS) level in feces. Intestinal permeability was elevated in association with both epithelial damage and decreased expression levels of tight junction protein zona occludens-1, and thereby LPS levels were increased in serum. For Kupffer cells, the foreign body phagocytic capacity was decreased in magnetic resonance imaging, and the proportion of M1 cells was increased in DKO mice. In vitro experiments showed that the inflammatory response was accelerated in the p62:Nrf2 double-deficient Kupffer cells when challenged with a low dose of LPS. Diet restriction improved the hepatic conditions of NASH in association with improved dysbiosis and decreased LPS levels. The results suggest that in DKO mice, activation of innate immunity by excessive LPS flux from the intestines, occurring both within and outside the liver, is central to the development of hepatic damage in the form of NASH

    Clinical utility of circulating cell-free Epstein–Barr virus DNA in patients with gastric cancer

    Get PDF
    Recent comprehensive molecular subtyping of gastric cancer (GC) identified Epstein–Barr virus (EBV)-positive tumors as a subtype with distinct salient molecular and clinical features. In this study, we aimed to determine the potential utility of circulating cell-free EBV DNA as a biomarker for the detection and/or monitoring of therapeutic response in patients with EBV-associated gastric carcinoma (EBVaGC). The EBV genes-to-ribonuclease P RNA component H1 ratios (EBV ratios) in the GC tumors and plasma samples were determined by quantitative real-time polymerase chain reaction in 153 patients with GC, including 14 patients with EBVaGC diagnosed by the conventional method. Circulating cell-free EBV DNA was detected in 14 patients with GC: the sensitivity and specificity of detection were 71.4% (10/14) and 97.1% (135/139), respectively. Plasma EBV ratios were significantly correlated with the size of EBVaGC tumors, and the plasma EBV DNA detected before surgery in EBVaGC cases disappeared after surgery. Patients with EBVaGC may have a better prognosis, but circulating cell-free EBV DNA had no or little impact on prognosis. In addition, repeated assessment of the plasma EBV ratio in EBVaGC showed a decrease and increase in plasma EBV DNA after treatment and during tumor progression/ recurrence, respectively. These results suggest the potential utility of circulating cell-free DNA to reveal EBV DNA for the identification of the EBVaGC subtype and/ or for real-time monitoring of tumor progression as well as treatment response in patients with EBVaGC
    corecore