115 research outputs found

    Angular Power Spectrum in Modular Invariant Inflation Model

    Get PDF
    We propose a scalar potential of inflation, motivated by modular invariant supergravity, and compute the angular power spectra of the adiabatic density perturbations that result from this model. The potential consists of three scalar fields, S, Y and T, together with two free parameters. By fitting the parameters to cosmological data at the fixed point T=1, we find that the potential behaves like the single-field potential of S, which slowly rolls down along the minimized trajectory in Y. We further show that the inflation predictions corresponding to this potential provide a good fit to the recent three-year WMAP data, e.g. the spectral index n_s = 0.951. The TT and TE angular power spectra obtained from our model almost completely coincide with the corresponding results obtained from the \LambdaCDM model. We conclude that our model is considered to be an adequate theory of inflation that explains the present data, although the theoretical basis of this model should be further explicated.Comment: 8 pages, 8 figures and 1 tabl

    Persistence of Genomes of Both Herpesvirus of Turkeys and Marek's Disease Virus in a Chicken T-Lymphoblastoid Cell Line

    Full text link

    Effect of the length of inflation on angular TT and TE power spectra in power-law inflation

    Full text link
    The effect of the length of inflation on the power spectra of scalar and tensor perturbations is estimated using the power-law inflation model with a scale factor of a(t) = t^q. Considering various pre-inflation models with radiation-dominated or scalar matter-dominated periods before inflation in combination with two matching conditions, the temperature angular power spectrum (TT) and temperature-polarization cross-power spectrum (TE) are calculated and a likelihood analysis is performed. It is shown that the discrepancies between the Wilkinson Microwave Anisotropy Probe (WMAP) data and the LCDM model, such as suppression of the spectrum at l = 2,3 and oscillatory behavior, may be explained by the finite length of inflation model if the length of inflation is near 60 e-folds and q > 300. The proposed models retain similar values of chi^2 to that achieved by the LCDM model with respect to fit to the WMAP data, but display different characteristics of the angular TE power spectra at l < 20.Comment: 41 pages, 11 figure
    • …
    corecore