617 research outputs found
Field-Induced Ferromagnetic Order and Colossal Magnetoresistance in La_{1.2}Sr_{1.8}Mn_2O_7: a ^{139}La NMR study
In order to gain insights into the origin of colossal magneto-resistance
(CMR) in manganese oxides, we performed a ^{139}La NMR study in the
double-layered compound La_{1.2}Sr_{1.8}Mn_2O_7. We find that above the Curie
temperature T_C=126 K, applying a magnetic field induces a long-range
ferromagnetic order that persists up to T=330 K. The critical field at which
the induced magnetic moment is saturated coincides with the field at which the
CMR effect reaches to a maximum. Our results therefore indicate that the CMR
observed above T_C in this compound is due to the field-induced ferromagnetism
that produces a metallic state via the double exchange interaction
Fermi surface of an important nano-sized metastable phase: AlLi
Nanoscale particles embedded in a metallic matrix are of considerable
interest as a route towards identifying and tailoring material properties. We
present a detailed investigation of the electronic structure, and in particular
the Fermi surface, of a nanoscale phase ( AlLi) that has so far been
inaccessible with conventional techniques, despite playing a key role in
determining the favorable material properties of the alloy (Al\nobreakdash-9
at. %\nobreakdash-Li). The ordered precipitates only form within the
stabilizing Al matrix and do not exist in the bulk; here, we take advantage of
the strong positron affinity of Li to directly probe the Fermi surface of
AlLi. Through comparison with band structure calculations, we demonstrate
that the positron uniquely probes these precipitates, and present a 'tuned'
Fermi surface for this elusive phase
A High-Resolution Compton Scattering Study of the Electron Momentum Density in Al
We report high-resolution Compton profiles (CP's) of Al along the three
principal symmetry directions at a photon energy of 59.38 keV, together with
corresponding highly accurate theoretical profiles obtained within the
local-density approximation (LDA) based band-theory framework. A good accord
between theory and experiment is found with respect to the overall shapes of
the CP's, their first and second derivatives, as well as the anisotropies in
the CP's defined as differences between pairs of various CP's. There are
however discrepancies in that, in comparison to the LDA predictions, the
measured profiles are lower at low momenta, show a Fermi cutoff which is
broader, and display a tail which is higher at momenta above the Fermi
momentum. A number of simple model calculations are carried out in order to
gain insight into the nature of the underlying 3D momentum density in Al, and
the role of the Fermi surface in inducing fine structure in the CP's. The
present results when compared with those on Li show clearly that the size of
discrepancies between theoretical and experimental CP's is markedly smaller in
Al than in Li. This indicates that, with increasing electron density, the
conventional picture of the electron gas becomes more representative of the
momentum density and that shortcomings of the LDA framework in describing the
electron correlation effects become less important.Comment: 7 pages, 6 figures, regular articl
Monitoring bridge degradation using dynamic strain, acoustic emission and environmental data
This paper studies the long term structural behaviour of a Victorian railway viaduct under train loading and temperature variation. A multi-sensing, self-sustaining and remotely controlled data acquisition system combines fibre Bragg grating strain sensors with acoustic emission sensors for the study of both global dynamic deformation and local masonry deterioration. A statistical analysis of fibre Bragg grating signals reveals regions with permanent change in the dynamic deformation of the bridge over the last two years, whereas in other locations the deformation follows a seasonal cyclic pattern. In order to decouple changes in structural behaviour due to real mechanical damage from normal seasonal effect, the paper studies the ambient temperature effect on the dynamic deformation of the bridge, showing a clear linear dependence. In particular, when temperature increases, the dynamic strain due to train loading decreases uniformly in the longitudinal direction. In the transverse direction, where the thermal expansion is not constrained, the decrease is smaller. Decoupling damage from normal seasonal effect is of critical importance for the development of reliable early warning structural alert systems for infrastructure networks. The paper further studies local masonry deterioration at four critical location by combining data from the two sensing technologies: fibre optic and acoustic emission sensors.This work is being funded by the Lloydās Register Foundation, EPSRC and Innovate UK through the Data-Centric Engineering programme of the Alan Turing Institute and through the Cambridge Centre for Smart Infrastructure and Construction. Funding for the monitoring installation was provided by EPSRC under the Ref. EP/N021614/1 grant and by Innovate UK under the Ref. 920035 grant
In situ observations of "cold trap" dehydration in the western tropical Pacific
International audienceWater vapor sonde observations were conducted at Bandung, Indonesia (6.90 S, 107.60 E) and Tarawa, Kiribati (1.35 N, 172.91 E) in December 2003 to examine the efficiency of the "cold trap'' dehydration in the tropical tropopause layer (TTL). Trajectory analysis based on bundles of trajectories suggest that the modification of air parcels' identity due to irreversible mixing by the branching-out and merging-in of nearby trajectories is found to be an important factor, in addition to the routes air parcels are supposed to follow, for interpreting the water vapor concentrations observed by radiosondes in the TTL. Clear correspondence between the observed water vapor concentration and the estimated temperature history of air parcels is found showing that dry air parcels are exposed to low temperatures while humid air parcels do not experience cold conditions during advection, in support of the "cold trap'' hypothesis. It is suggested that the observed air parcel retained the water vapor by roughly twice as much as the minimum saturation mixing ratio after its passage through the "cold trap,'' although appreciable uncertainties remain
Recommendation of RILEM TC 212-ACD: acousticemission and related NDE techniques for crack detectionand damage evaluation in concrete. Measurement method for acoustic emission signals in concrete
The text presented hereafter is a draft for general consideration
Recommendation of RILEM TC 212-ACD: acousticemission and related NDE techniques for crack detectionand damage evaluation in concrete.Test method for damage qualification of reinforced concrete beams by acousticemission
The text presented hereafter is a draft for general consideration
A Novel 2D Folding Technique for Enhancing Fermi Surface Signatures in the Momentum Density: Application to Compton Scattering Data from an Al-3at%Li Disordered Alloy
We present a novel technique for enhancing Fermi surface (FS) signatures in
the 2D distribution obtained after the 3D momentum density in a crystal is
projected along a specific direction in momentum space. These results are
useful for investigating fermiology via high resolution Compton scattering and
positron annihilation spectroscopies. We focus on the particular case of the
(110) projection in an fcc crystal where the standard approach based on the use
of the Lock-Crisp-West (LCW) folding theorem fails to give a clear FS image due
to the strong overlap with FS images obtained through projection from higher
Brillouin zones. We show how these superposed FS images can be disentangled by
using a selected set of reciprocal lattice vectors in the folding process. The
applicability of our partial folding scheme is illustrated by considering
Compton spectra from an Al-3at%Li disordered alloy single crystal. For this
purpose, high resolution Compton profiles along nine directions in the (110)
plane were measured. Corresponding highly accurate theoretical profiles in
Al-3at%Li were computed within the local density approximation (LDA)-based
Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA)
first-principles framework. A good level of overall accord between theory and
experiment is obtained, some expected discrepancies reflecting electron
correlation effects notwithstanding, and the partial folding scheme is shown to
yield a clear FS image in the (110) plane in Al-3%Li.Comment: 24 pages, 8 figures, to appear in Phys. Rev.
Measurement of stratospheric and mesospheric winds with a submillimeter wave limb sounder: results from JEM/SMILES and simulation study for SMILES-2
Satellite missions for measuring winds in the troposphere and thermosphere will be launched in a near future. There is no plan to observe winds in the altitude range between 30-90 km, though middle atmospheric winds are recognized as an essential parameter in various atmospheric research areas. Sub-millimetre limb sounders have the capability to fill this altitude gap. In this paper, we summarize the wind retrievals obtained from the Japanese Superconducting Submillimeter Wave Limb Emission Sounder (SMILES) which operated from the International Space Station between September 2009 and April 2010. The results illustrate the potential of such instruments to measure winds. They also show the need of improving the wind representation in the models in the Tropics, and globally in the mesosphere. A wind measurement sensitivity study has been conducted for its successor, SMILES-2, which is being studied in Japan. If it is realized, sub-millimeter and terahertz molecular lines suitable to determine line-of-sight winds will be measured. It is shown that with the current instrument definition, line-of-sight winds can be observed from 20 km up to more than 160 km. Winds can be retrieved with a precision better than 5 m s(-1) and a vertical resolution of 2-3 km between 35-90 km. Above 90 km, the precision is better than 10 m s(-1) with a vertical resolution of 3-5 km. Measurements can be performed day and night with a similar sensitivity. Requirements on observation parameters such as the antenna size, the satellite altitude are discussed. An alternative setting for the spectral bands is examined. The new setting is compatible with the general scientific objectives of the mission and the instrument design. It allows to improve the wind measurement sensitivity between 35 to 90 km by a factor 2. It is also shown that retrievals can be performed with a vertical resolution of 1 km and a precision of 5-10 m s(-1) between 50 and 90 km. RAGAM A, 1953, PHYSICAL REVIEW, V92, P144
- ā¦