1,323 research outputs found

    Acceleration disturbances due to local gravity gradients in ASTROD I

    Full text link
    The Astrodynamical Space Test of Relativity using Optical Devices (ASTROD) mission consists of three spacecraft in separate solar orbits and carries out laser interferometric ranging. ASTROD aims at testing relativistic gravity, measuring the solar system and detecting gravitational waves. Because of the larger arm length, the sensitivity of ASTROD to gravitational waves is estimated to be about 30 times better than Laser Interferometer Space Antenna (LISA) in the frequency range lower than about 0.1 mHz. ASTROD I is a simple version of ASTROD, employing one spacecraft in a solar orbit. It is the first step for ASTROD and serves as a technology demonstration mission for ASTROD. In addition, several scientific results are expected in the ASTROD I experiment. The required acceleration noise level of ASTROD I is 10^-13 m s^-2 Hz^{-1/2} at the frequency of 0.1 mHz. In this paper, we focus on local gravity gradient noise that could be one of the largest acceleration disturbances in the ASTROD I experiment. We have carried out gravitational modelling for the current test-mass design and simplified configurations of ASTROD I by using an analytical method and the Monte Carlo method. Our analyses can be applied to figure out the optimal designs of the test mass and the constructing materials of the spacecraft, and the configuration of compensation mass to reduce local gravity gradients.Comment: 6 pages, presented at the 6th Edoardo Amaldi Conference (Okinawa Japan, June 2005); to be published in Journal of Physics: Conference Serie

    Impurity-doping induced ferroelectricity in frustrated antiferromagnet CuFeO2

    Full text link
    Dielectric responses have been investigated on the triangular-lattice antiferromagnet CuFeO2 and its site-diluted analogs CuFe1-xAlxO2 (x=0.01 and 0.02) with and without application of magnetic field. We have found a ferroelectric behavior at zero magnetic field for x=0.02. At any doping level, the onset field of the ferroelectricity always coincides with that of the noncollinear magnetic structure while the transition field dramatically decreases to zero field with Al doping. The results imply the further possibility of producing the ferroelectricity by modifying the frustrated spin structure in terms of site-doping and external magnetic field.Comment: 4 pages, 4 figure

    Heat conduction of single-walled carbon nanotube isotope-superlattice structures: A molecular dynamics study

    Full text link
    Heat conduction of single-walled carbon nanotubes (SWNTs) isotope-superlattice is investigated by means of classical molecular dynamics simulations. Superlattice structures were formed by alternately connecting SWNTs with different masses. On varying the superlattice period, the critical value with minimum effective thermal conductivity was identified, where dominant physics switches from zone-folding effect to thermal boundary resistance of lattice interface. The crossover mechanism is explained with the energy density spectra where zone-folding effects can be clearly observed. The results suggest that the critical superlattice period thickness depends on the mean free path distribution of diffusive-ballistic phonons. The reduction of the thermal conductivity with superlattice structures beats that of the one-dimensional alloy structure, though the minimum thermal conductivity is still slightly higher than the value obtained by two-dimensional random mixing of isotopes.Comment: 7 Pages, 5 figures, accepted to Phys. Rev.

    The Fuzzy Model for Diagnosis of Animal Disease

    Full text link

    Development of a low-mass and high-efficiency charged particle detector

    Get PDF
    We developed a low-mass and high-efficiency charged particle detector for an experimental study of the rare decay KLπ0ννˉK_L \rightarrow \pi^0 \nu \bar{\nu}. The detector is important to suppress the background with charged particles to the level below the signal branching ratio predicted by the Standard Model (O(1011^{-11})). The detector consists of two layers of 3-mm-thick plastic scintillators with wavelength shifting fibers embedded and Multi Pixel Photon Counters for readout. We manufactured the counter and evaluated the performance such as light yield, timing resolution, and efficiency. With this design, we achieved the inefficiency per layer against penetrating charged particles to be less than 1.5×1051.5 \times 10^{-5}, which satisfies the requirement of the KOTO experiment determined from simulation studies.Comment: 20 pages, 18 figure

    An aerogel Cherenkov detector for multi-GeV photon detection with low sensitivity to neutrons

    Get PDF
    We describe a novel photon detector which operates under an intense flux of neutrons. It is composed of lead-aerogel sandwich counter modules. Its salient features are high photon detection efficiency and blindness to neutrons. As a result of Monte Carlo (MC) simulations, the efficiency for photons with the energy larger than 1 GeV is expected to be higher than 99.5% and that for 2 GeV/cc neutrons less than 1%. The performance on the photon detection under such a large flux of neutrons was measured for a part of the detector. It was confirmed that the efficiency to photons with the energy >>1 GeV was consistent with the MC expectation within 8.2% uncertainty.Comment: 16 pages, 16 figures, submitted to Prog. Theor. Exp. Phy
    corecore