29,460 research outputs found
Sine-Gordon Soliton on a Cnoidal Wave Background
The method of Darboux transformation, which is applied on cnoidal wave
solutions of the sine-Gordon equation, gives solitons moving on a cnoidal wave
background. Interesting characteristics of the solution, i.e., the velocity of
solitons and the shift of crests of cnoidal waves along a soliton, are
calculated. Solutions are classified into three types (Type-1A, Type-1B,
Type-2) according to their apparent distinct properties.Comment: 11 pages, 5 figures, Contents change
Vertical variation of optical properties of mixed Asian dust/pollution plumes according to pathway of air mass transport over East Asia
© Author(s) 2015. This is an Open Access article made available under the terms of the Creative Commons Attribution License 3.0 https://creativecommons.org/licenses/by/3.0/We use five years (2009-2013) of multiwavelength Raman lidar measurements at Gwangju, South Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust depending on its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532 nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modeling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground at which these plumes were transported: (case I) the dust layers passed over China at high altitude levels (> 3 km) until arrival over Gwangju, and (case II) the Asian dust layers were transported near the surface and within the lower troposphere (< 3 km) over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ depending on their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21 ± 0.06 (at 532 nm), the mean lidar ratios were 52 ± 7 sr at 355 nm and 53 ± 8 sr at 532 nm, and the mean Ångström exponent was 0.74 ± 0.31 for case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios (0.13 ± 0.04 at 532 nm), and higher lidar ratio (63 ± 9 sr at 355 nm and 62 ± 8 sr at 532 nm) and Ångström exponents (0.98 ± 0.51). These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban pollution. We find a decrease of the linear depolarization ratio of the mixed dust/pollution plume depending on transport time if the pollution layer traveled over China at low heights, i.e., below approximately 3 km above ground. In contrast, we do not find such a trend if the dust plumes traveled at heights above 3 km over China. We need a longer time series of lidar measurements in order to determine in a quantitative way the change of optical properties of dust with transport time.Peer reviewedFinal Published versio
Classification of Radiology Reports Using Neural Attention Models
The electronic health record (EHR) contains a large amount of
multi-dimensional and unstructured clinical data of significant operational and
research value. Distinguished from previous studies, our approach embraces a
double-annotated dataset and strays away from obscure "black-box" models to
comprehensive deep learning models. In this paper, we present a novel neural
attention mechanism that not only classifies clinically important findings.
Specifically, convolutional neural networks (CNN) with attention analysis are
used to classify radiology head computed tomography reports based on five
categories that radiologists would account for in assessing acute and
communicable findings in daily practice. The experiments show that our CNN
attention models outperform non-neural models, especially when trained on a
larger dataset. Our attention analysis demonstrates the intuition behind the
classifier's decision by generating a heatmap that highlights attended terms
used by the CNN model; this is valuable when potential downstream medical
decisions are to be performed by human experts or the classifier information is
to be used in cohort construction such as for epidemiological studies
A theoretical and numerical approach to "magic angle" of stone skipping
We investigate oblique impacts of a circular disk and water surface. An
experiment [ Clanet, C., Hersen, F. and Bocquet, L., Nature 427, 29 (2004) ]
revealed that there exists a "magic angle" of 20 [deg.] between a disk face and
water surface which minimize the required speed for ricochet. We perform
3-dimensional simulation of the water impacts using the Smoothed Particle
Hydrodynamics (SPH) and analyze the results with an ordinal differential
equation (ODE) model. Our simulation is in good agreement with the experiment.
The analysis with the ODE model give us a theoretical insight for the ``magic
angle" of stone skipping.Comment: 4 pages, 4figure
Point-Like Graviton Scattering in Plane-Wave Matrix Model
In a plane-wave matrix model we discuss a two-body scattering of gravitons in
the SO(3) symmetric space. In this case the graviton solutions are point-like
in contrast to the scattering in the SO(6) symmetric space where spherical
membranes are interpreted as gravitons. We concentrate on a configuration in
the 1-2 plane where a graviton rotates with a constant radius and the other one
elliptically rotates. Then the one-loop effective action is computed by using
the background field method. As the result, we obtain the 1/r^7-type
interaction potential, which strongly suggests that the scattering in the
matrix model would be closely related to that in the light-front
eleven-dimensional supergravity.Comment: 17 pages, 1 figure, LaTeX, v2) references adde
Black hole formation in bidimensional dilaton gravity coupled to scalar matter systems
This work deals with the formation of black hole in bidimensional dilaton
gravity coupled to scalar matter fields. We investigate two scalar matter
systems, one described by a sixth power potential and the other defined with
two scalar fields containing up to the fourth power in the fields. The
topological solutions that appear in these cases allow the formation of black
holes in the corresponding dilaton gravity models.Comment: Latex, 9 pages. Published in Mod. Phys. Lett. A14 (1999) 268
Time-domain Brillouin Scattering as a Local Temperature Probe in Liquids
We present results of time-domain Brillouin scattering (TDBS) to determine
the local temperature of liquids in contact to an optical transducer. TDBS is
based on an ultrafast pump-probe technique to determine the light scattering
frequency shift caused by the propagation of coherent acoustic waves in a
sample. Since the temperature influences the Brillouin scattering frequency
shift, the TDBS signal probes the local temperature of the liquid. Results for
the extracted Brillouin scattering frequencies recorded at different liquid
temperatures and at different laser powers - i.e. different steady state
background temperatures- are shown to demonstrate the usefulness of TDBS as a
temperature probe. This TDBS experimental scheme is a first step towards the
investigation of ultrathin liquids measured by GHz ultrasonic probing.Comment: arXiv admin note: substantial text overlap with arXiv:1702.0107
Non-monotonic temperature dependent transport in graphene grown by Chemical Vapor Deposition
Temperature-dependent resistivity of graphene grown by chemical vapor
deposition (CVD) is investigated. We observe in low mobility CVD graphene
device a strong insulating behavior at low temperatures and a metallic behavior
at high temperatures manifesting a non-monotonic in the temperature dependent
resistivity.This feature is strongly affected by carrier density modulation. To
understand this anomalous temperature dependence, we introduce thermal
activation of charge carriers in electron-hole puddles induced by randomly
distributed charged impurities. Observed temperature evolution of resistivity
is then understood from the competition among thermal activation of charge
carriers, temperature-dependent screening and phonon scattering effects. Our
results imply that the transport property of transferred CVD-grown graphene is
strongly influenced by the details of the environmentComment: 7 pages, 3 figure
- …