1,965 research outputs found

    Azithromycin Inhibits Mucus Hypersecretion from Airway Epithelial Cells

    Get PDF
    To examine the in vivo effects of the 15-member macrolide, azithromycin (AZM), on mucus hypersecretion, we induced hypertrophic and metaplastic changes of goblet cells in rat nasal epithelium by intranasal instillation of ovalbumin (OVA) in OVA-sensitized rats, or by intranasal lipopolysaccharides (LPS) instillation. Oral administration of AZM (5–10 mg/kg) or clarithromycin (CAM, 5–10 mg/kg) significantly inhibited OVA- and LPS-induced mucus production, whereas josamycin (JM) or ampicillin (ABPC) showed no effect. In vitro effects of AZM on airway epithelial cells were examined using NCI-H292 cells and human nasal epithelial cells cultured in air-liquid interface. Mucus secretion was evaluated by enzyme-linked immunosorbent assay using an anti-MUC5AC monoclonal antibody. AZM or CAM significantly inhibited tumor necrosis factor-α (TNF-α) (20 ng/mL)-induced MUC5AC secretion from NCI-H292 cells at 10−6–10−7 M, whereas JM or ABPC showed no effect. AZM significantly inhibited TNF-α (20 ng/mL)-induced MUC5AC secretion from human nasal epithelial cells at 10−4 M. MUC5AC mRNA expression was also significantly inhibited. These results indicate that the 15-member macrolide, AZM, exerts direct inhibitory effects on mucus secretion from airway epithelial cells and that it may be useful for the treatment of mucus hypersecretion caused by allergic inflammation and LPS stimulation

    Mixed oligopoly and spatial agglomeration in quasi-linear city

    Get PDF
    We apply a spatial model that includes both circular-city and linear-city models as special cases to the analysis of location-quantity model in mixed oligopoly. We find that the equilibrium pattern continuously moves from that of the circular-city to that of the linear-city and that the linear-city result is more likely in our setting as the equilibrium location.Linear-city, Circular-city, Location-quantity, Mixed oligopoly

    Supply Management of Rental Housing Facilities: Effect of Changes in the Quality of Housing Equipment in the Tokyo Housing Rental Market

    Get PDF
    The Tokyo housing market is considered to be one of the fastest evolving markets in the world. In recent years, functions such as TV intercoms, bathroom dryers, system kitchens, and toilets with washlets, which are not often seen in European and US houses, have spread and become common in Japanese houses. Under such circumstances, the importance of various equipment ancillary to housing, together with the location and quality of the building, is increasingly a factor for determining the value of housing in Tokyo. This is because when a new product appears, the old product is ordered to be withdrawn from the market, or its commodity value is greatly depreciated. This study measured the economic value of improving the quality of housing with new equipment in the Tokyo rental housing market and clarified the extent of economic depreciation that is occurring due to obsolescence. According to the obtained results, new functions are being added sequentially to the Japanese rental housing according to the age of the building, and these functions are non-negligible in the determination of housing rent, even when compared with location and building structure. The effect of obsolescence due to the addition of new functions was roughly—5%

    Product Differentiation and Entry Timing in a Continuous Time Spatial Competition Model

    Full text link

    In-vivo bone CT based on phase contrast

    Get PDF
    Hard X-ray phase-contrast imaging is sensitive to density variation in objects and shows a great dose advantage for in vivo observation over absorption-contrast imaging. We examined the capability of propagation-based phase-contrast tomography (PB-PCT) with single-distance phase retrieval for tracking of bone structure and mineral changes using monochromatic synchrotron light. Female mice underwent ovariectomy and drill-hole surgery in the right tibial diaphysis and were divided into two groups: OVX and OVX-E (n = 6 each); the latter group was treated with intraperitoneal administration of 14,15-epoxyeicosatrienoic acid (14,15-EET) for promoting bone repair. Age-matched mice subjected to sham ovariectomy and drill-hole surgery (Sham) were also prepared (n = 6). In vivo CT scans of the drilled defect were acquired 3, 7, and 11 days after surgery, and tomographic images were matched by three-dimensional registration between successive time points for monitoring the process of defect filling. Additionally, using absorption-contrast CT as the reference method, the validity of PB-PCT was evaluated in one mouse by comparing images of tibial metaphyseal bone between the two methods in terms of bone geometry as well as the measure of mineralization. Although phase retrieval is strictly valid only for single-material objects, PB-PCT, with its lower radiation dose, could provide a depiction of bone structure similar to that from absorption-contrast CT. There was a significant correlation of linear absorption coefficients between the two methods, indicating the possibility of a rough estimate of the measure of mineralization by PB-PCT. Indeed, delayed bone regeneration (OVX vs. Sham) and the efficacy of 14,15-EET for improving osteoporotic bone repair (OVX-E vs. OVX) could be detected in both bone volume and mineralization by PB-PCT. Thus, in combination with single-distance phase retrieval, PB-PCT would have great potential for providing a valuable tool to track changes in bone structure and mineralization, and for evaluating the effects of therapeutic interventions as well

    アクセラレーター・プログラムの現状と効果

    Get PDF

    Interdisciplinary Science and Engineering in Health Systems Initiatives through Okayama Living Lab

    Get PDF

    Multiscale and hierarchical reaction mechanism in a lithium-ion battery

    Get PDF
    The key to improving the performance of lithium-ion batteries is to precisely elucidate the temporal and spatial hierarchical structure of the battery. Lithium-ion batteries consist of cathodes and anodes and a separator containing an electrolyte. The cathodes and anodes of lithium-ion batteries are made of a composite material consisting of an active material, a conductive material, and a binder to form a complex three-dimensional structure. The reaction proceeds as lithium ions are repeatedly inserted into and removed from the active material. Therefore, the lattice of the active material is restructured due to ion diffusion, which results in phase change. At the active material–electrolyte interface, the insertion and de-insertion of lithium ions proceed with the charge transfer reaction. The charge–discharge reaction of a lithium-ion battery is a nonequilibrium state due to the interplay of multiple phenomena. Analysis after disassembling a battery, which is performed in conventional battery research, does not provide an accurate understanding of the dominant factors of the reaction rate and the degradation mechanism, in some cases. This review introduces the results of research on the temporal and spatial hierarchical structure of lithium-ion batteries, focusing on operando measurements taken during charge–discharge reactions. Chapter 1 provides an overview of the hierarchical reaction mechanism of lithium-ion batteries. Chapter 2 introduces the operando measurement technique, which is useful for analysis. Chapter 3 describes the reaction at the electrode–electrolyte interface, which is the reaction field, and Chapter 4 discusses the nonequilibrium structural change caused by the two-phase reaction in the active material. Chapter 5 introduces the study of the unique reaction heterogeneity of a composite electrode, which enables practical energy storage. Understanding the hierarchical reaction mechanism will provide useful information for the design of lithium-ion batteries and next-generation batteries
    corecore