16,153 research outputs found
A Relativistic Description of Gentry's New Redshift Interpretation
We obtain a new expression of the Friedmann-Robertson-Walker metric, which is
an analogue of a static chart of the de Sitter space-time. The reduced metric
contains two functions, and , which are interpreted as,
respectively, the mass function and the gravitational potential. We find that,
near the coordinate origin, the reduced metric can be approximated in a static
form and that the approximated metric function, , satisfies the
Poisson equation. Moreover, when the model parameters of the
Friedmann-Robertson-Walker metric are suitably chosen, the approximated metric
coincides with exact solutions of the Einstein equation with the perfect fluid
matter. We then solve the radial geodesics on the approximated space-time to
obtain the distance-redshift relation of geodesic sources observed by the
comoving observer at the origin. We find that the redshift is expressed in
terms of a peculiar velocity of the source and the metric function, ,
evaluated at the source position, and one may think that this is a new
interpretation of {\it Gentry's new redshift interpretation}.Comment: 11 pages. Submitted to Modern Physics Letters
Magnetic Flux Loss and Flux Transport in a Decaying Active Region
We estimate the temporal change of magnetic flux perpendicular to the solar
surface in a decaying active region by using a time series of the spatial
distribution of vector magnetic fields in the photosphere. The vector magnetic
fields are derived from full spectropolarimetric measurements with the Solar
Optical Telescope aboard Hinode. We compare a magnetic flux loss rate to a flux
transport rate in a decaying sunspot and its surrounding moat region. The
amount of magnetic flux that decreases in the sunspot and moat region is very
similar to magnetic flux transported to the outer boundary of the moat region.
The flux loss rates [] of magnetic elements with positive and
negative polarities are balanced each other around the outer boundary of the
moat region. These results suggest that most of the magnetic flux in the
sunspot is transported to the outer boundary of the moat region as moving
magnetic features, and then removed from the photosphere by flux cancellation
around the outer boundary of the moat region.Comment: 16 pages, 7 figures, Accepted for publication in Ap
Atomic matter wave scanner
We report on the experimental realization of an atom optical device, that
allows scanning of an atomic beam. We used a time-modulated evanescent wave
field above a glass surface to diffract a continuous beam of metastable Neon
atoms at grazing incidence. The diffraction angles and efficiencies were
controlled by the frequency and form of modulation, respectively. With an
optimized shape, obtained from a numerical simulation, we were able to transfer
more than 50% of the atoms into the first order beam, which we were able to
move over a range of 8 mrad.Comment: 4 pages, 4 figure
Recommended from our members
Nucleotide specificity of the enzymatic and motile activities of dynein, kinesin, and heavy meromyosin.
The substrate specificities of dynein, kinesin, and myosin substrate turnover activity and cytoskeletal filament-driven translocation were examined using 15 ATP analogues. The dyneins were more selective in their substrate utilization than bovine brain kinesin or muscle heavy meromyosin, and even different types of dyneins, such as 14S and 22S dynein from Tetrahymena cilia and the beta-heavy chain-containing particle from the outer-arm dynein of sea urchin flagella, could be distinguished by their substrate specificities. Although bovine brain kinesin and muscle heavy meromyosin both exhibited broad substrate specificities, kinesin-induced microtubule translocation varied over a 50-fold range in speed among the various substrates, whereas heavy meromyosin-induced actin translocation varied only by fourfold. With both kinesin and heavy meromyosin, the relative velocities of filament translocation did not correlate well with the relative filament-activated substrate turnover rates. Furthermore, some ATP analogues that did not support the filament translocation exhibited filament-activated substrate turnover rates. Filament-activated substrate turnover and power production, therefore, appear to become uncoupled with certain substrates. In conclusion, the substrate specificities and coupling to motility are distinct for different types of molecular motor proteins. Such nucleotide "fingerprints" of enzymatic activities of motor proteins may prove useful as a tool for identifying what type of motor is involved in powering a motility-related event that can be reconstituted in vitro
An AC electric trap for ground-state molecules
We here report on the realization of an electrodynamic trap, capable of
trapping neutral atoms and molecules in both low-field and high-field seeking
states. Confinement in three dimensions is achieved by switching between two
electric field configurations that have a saddle-point at the center of the
trap, i.e., by alternating a focusing and a defocusing force in each direction.
AC trapping of 15ND3 molecules is experimentally demonstrated, and the
stability of the trap is studied as a function of the switching frequency. A 1
mK sample of 15ND3 molecules in the high-field seeking component of the
|J,K>=|1,1> level, the ground-state of para-ammonia, is trapped in a volume of
about 1 mm^3
Shape coexistence in Lead isotopes in the interacting boson model with Gogny energy density functional
We investigate the emergence and evolution of shape coexistence in the
neutron-deficient Lead isotopes within the interacting boson model (IBM) plus
configuration mixing with microscopic input based on the Gogny energy density
functional (EDF). The microscopic potential energy surface obtained from the
constrained self-consistent Hartree-Fock-Bogoliubov method employing the
Gogny-D1M EDF is mapped onto the coherent-state expectation value of the
configuration-mixing IBM Hamiltonian. In this way, the parameters of the IBM
Hamiltonian are fixed for each of the three relevant configurations (spherical,
prolate and oblate) associated to the mean field minima. Subsequent
diagonalization of the Hamiltonian provides the excitation energy of the
low-lying states and transition strengths among them. The model predictions for
the level energies and evolving shape coexistence in the considered
Lead chain are consistent both with experiment and with the indications of the
Gogny-EDF energy surfaces.Comment: 12 pages, 6 figures, 1 tabl
Electrodynamic trapping of spinless neutral atoms with an atom chip
Three dimensional electrodynamic trapping of neutral atoms has been
demonstrated. By applying time-varying inhomogeneous electric fields with
micron-sized electrodes, nearly strontium atoms in the state
have been trapped with a lifetime of 80 ms. In order to design the electrodes,
we numerically analyzed the electric field and simulated atomic trajectories in
the trap, which showed reasonable agreement with the experiment.Comment: 4pages, 4figures, to appear in Phys. Rev. Let
Testing Spatial Noncommutativity via Rydberg Atoms
The possibility of testing spatial noncommutativity via Rydberg atoms is
explored. An atomic dipole of a cold Rydberg atom is arranged in appropriate
electric and magnetic field, so that the motion of the dipole is constrained to
be planar and rotationally symmetric. Spatial noncommutativity leads to that
the canonical angular momentum possesses fractional values. In the limit of
vanishing kinetic energy, the dominate value of the lowest canonical angular
momentum takes . Furthermore, in the limit of eliminating magnetic
field, the dominate value of the lowest canonical angular momentum changes from
to . This result is a clear signal of spatial
noncommutativity. An experimental verification of this prediction is suggested.Comment: 10 pages. Physical Review Letters (in press
Giant Quantum Reflection of Neon Atoms from a Ridged Silicon Surface
The specular reflectivity of slow, metastable neon atoms from a silicon
surface was found to increase markedly when the flat surface was replaced by a
grating structure with parallel narrow ridges. For a surface with ridges that
have a sufficiently narrow top, the reflectivity was found to increase more
than two orders of magnitude at the incident angle of 10 mRad from the surface.
The slope of the reflectivity vs the incident angle near zero was found to be
nearly an order of magnitude smaller than that of a flat surface. A grating
with 6.5% efficiency for the first-order diffraction was fabricated by using
the ridged surface structure.Comment: 5 pages, 4 figures. To be published in J. Phys. Soc. Jp
- …