194 research outputs found

    Degree-constrained Subgraph Reconfiguration is in P

    Full text link
    The degree-constrained subgraph problem asks for a subgraph of a given graph such that the degree of each vertex is within some specified bounds. We study the following reconfiguration variant of this problem: Given two solutions to a degree-constrained subgraph instance, can we transform one solution into the other by adding and removing individual edges, such that each intermediate subgraph satisfies the degree constraints and contains at least a certain minimum number of edges? This problem is a generalization of the matching reconfiguration problem, which is known to be in P. We show that even in the more general setting the reconfiguration problem is in P.Comment: Full version of the paper published at Mathematical Foundations of Computer Science (MFCS) 201

    Maintenance of Strongly Connected Component in Shared-memory Graph

    Full text link
    In this paper, we present an on-line fully dynamic algorithm for maintaining strongly connected component of a directed graph in a shared memory architecture. The edges and vertices are added or deleted concurrently by fixed number of threads. To the best of our knowledge, this is the first work to propose using linearizable concurrent directed graph and is build using both ordered and unordered list-based set. We provide an empirical comparison against sequential and coarse-grained. The results show our algorithm's throughput is increased between 3 to 6x depending on different workload distributions and applications. We believe that there are huge applications in the on-line graph. Finally, we show how the algorithm can be extended to community detection in on-line graph.Comment: 29 pages, 4 figures, Accepted in the Conference NETYS-201

    Efficient Implementation of a Synchronous Parallel Push-Relabel Algorithm

    Full text link
    Motivated by the observation that FIFO-based push-relabel algorithms are able to outperform highest label-based variants on modern, large maximum flow problem instances, we introduce an efficient implementation of the algorithm that uses coarse-grained parallelism to avoid the problems of existing parallel approaches. We demonstrate good relative and absolute speedups of our algorithm on a set of large graph instances taken from real-world applications. On a modern 40-core machine, our parallel implementation outperforms existing sequential implementations by up to a factor of 12 and other parallel implementations by factors of up to 3

    Theoretically Efficient Parallel Graph Algorithms Can Be Fast and Scalable

    Full text link
    There has been significant recent interest in parallel graph processing due to the need to quickly analyze the large graphs available today. Many graph codes have been designed for distributed memory or external memory. However, today even the largest publicly-available real-world graph (the Hyperlink Web graph with over 3.5 billion vertices and 128 billion edges) can fit in the memory of a single commodity multicore server. Nevertheless, most experimental work in the literature report results on much smaller graphs, and the ones for the Hyperlink graph use distributed or external memory. Therefore, it is natural to ask whether we can efficiently solve a broad class of graph problems on this graph in memory. This paper shows that theoretically-efficient parallel graph algorithms can scale to the largest publicly-available graphs using a single machine with a terabyte of RAM, processing them in minutes. We give implementations of theoretically-efficient parallel algorithms for 20 important graph problems. We also present the optimizations and techniques that we used in our implementations, which were crucial in enabling us to process these large graphs quickly. We show that the running times of our implementations outperform existing state-of-the-art implementations on the largest real-world graphs. For many of the problems that we consider, this is the first time they have been solved on graphs at this scale. We have made the implementations developed in this work publicly-available as the Graph-Based Benchmark Suite (GBBS).Comment: This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 201
    corecore