12,773 research outputs found
Spin Hall Current and Spin-transfer Torque in Ferromagnetic Metal
We theoretically examine the spin-transfer torque in the presence of
spin-orbit interaction (SOI) at impurities in a ferromagnetic metal on the
basis of linear response theory. We obtained, in addition to the usual
spin-transfer torque, a new contributioin in the first order in SOI, where
is the spin Hall current driven by an
external electric field. This is a reaction to inverse spin Hall effect driven
by spin motive force in a ferromagnet.Comment: 4 pages, Proceedings of the International Conference on Magnetism,
submitted to J. Phys: Conference Serie
Statistical Study of the Reconnection Rate in Solar Flares Observed with YOHKOH/SXT
We report a statistical study of flares observed with the Soft X-ray
Telescope (SXT) onboard Yohkoh in the year of 2000. We measure physical
parameters of 77 flares, such as the temporal scale, the size, and the magnetic
flux density and find that the sizes of flares tend to be distributed more
broadly as the GOES class becomes weaker and that there is a lower limit of
magnetic flux density that depends on the GOES class. We also examine the
relationship between these parameters and find weak correlation between
temporal and spatial scales of flares. We estimate reconnection inflow
velocity, coronal Alfven velocity, and reconnection rate using above observed
values. The inflow velocities are distributed from a few km/s to several tens
km/s and the Alfven velocities in the corona are in the range from 10^3 to 10^4
km/s. Hence the reconnection rate is 10^-3 - 10^-2. We find that the
reconnection rate in a flare tends to decrease as the GOES class of the flare
increases. This value is within one order of magnitude from the theoretical
maximum value predicted by the Petschek model, although the dependence of the
reconnection rate on the magnetic Reynolds number tends to be stronger than
that in the Petschek model.Comment: 21 pages, 8 figures, accepted for publication in Ap
Possible explanation for star-crushing effect in binary neutron star simulations
A possible explanation is suggested for the controversial star-crushing
effect seen in numerical simulations of inspiraling neutron star binaries by
Wilson, Mathews and Marronetti (WMM). An apparently incorrect definition of
momentum density in the momentum constraint equation used by WMM gives rise to
a post-1-Newtonian error in the approximation scheme. We show by means of an
analytic, post-1-Newtonian calculation that this error causes an increase of
the stars' central densities which is of the order of several percent when the
stars are separated by a few stellar radii, in agreement with what is seen in
the simulations.Comment: 4 pages, 1 figure, uses revetx macros, minor revision
Merger of binary neutron stars of unequal mass in full general relativity
We present results of three dimensional numerical simulations of the merger
of unequal-mass binary neutron stars in full general relativity. A -law
equation of state is adopted, where , ,
\varep, and are the pressure, rest mass density, specific internal
energy, and the adiabatic constant, respectively. We take and the
baryon rest-mass ratio to be in the range 0.85--1. The typical grid size
is for . We improve several implementations since the
latest work. In the present code, the radiation reaction of gravitational waves
is taken into account with a good accuracy. This fact enables us to follow the
coalescence all the way from the late inspiral phase through the merger phase
for which the transition is triggered by the radiation reaction. It is found
that if the total rest-mass of the system is more than times of the
maximum allowed rest-mass of spherical neutron stars, a black hole is formed
after the merger irrespective of the mass ratios. The gravitational waveforms
and outcomes in the merger of unequal-mass binaries are compared with those in
equal-mass binaries. It is found that the disk mass around the so formed black
holes increases with decreasing rest-mass ratios and decreases with increasing
compactness of neutron stars. The merger process and the gravitational
waveforms also depend strongly on the rest-mass ratios even for the range --1.Comment: 32 pages, PRD68 to be publishe
On the Maximum Mass of Differentially Rotating Neutron Stars
We construct relativistic equilibrium models of differentially rotating
neutron stars and show that they can support significantly more mass than their
nonrotating or uniformly rotating counterparts. We dynamically evolve such
``hypermassive'' models in full general relativity and show that there do exist
configurations which are dynamically stable against radial collapse and bar
formation. Our results suggest that the remnant of binary neutron star
coalescence may be temporarily stabilized by differential rotation, leading to
delayed collapse and a delayed gravitational wave burst.Comment: 4 pages, 2 figures, uses emulateapj.sty; to appear in ApJ Letter
Method of Collective Degrees of Freedom in Spin Coherent State Path Integral
We present a detailed field theoretic description of those collective degrees
of freedom (CDF) which are relevant to study macroscopic quantum dynamics of a
quasi-one-dimensional ferromagnetic domain wall. We apply spin coherent state
path integral (SCSPI) in the proper discrete time formalism (a) to extract the
relevant CDF's, namely, the center position and the chirality of the domain
wall, which originate from the translation and the rotation invariances of the
system in question, and (b) to derive effective action for the CDF's by
elimination of environmental zero-modes with the help of the {\it Faddeev-Popov
technique}. The resulting effective action turns out to be such that both the
center position and the chirality can be formally described by boson coherent
state path integral. However, this is only formal; there is a subtle departure
from the latter.Comment: 10 pages, 1 figur
Axisymmetric general relativistic hydrodynamics: Long-term evolution of neutron stars and stellar collapse to neutron stars and black holes
We report a new implementation for axisymmetric simulation in full general
relativity. In this implementation, the Einstein equations are solved using the
Nakamura-Shibata formulation with the so-called cartoon method to impose an
axisymmetric boundary condition, and the general relativistic hydrodynamic
equations are solved using a high-resolution shock-capturing scheme based on an
approximate Riemann solver. As tests, we performed the following simulations:
(i) long-term evolution of non-rotating and rapidly rotating neutron stars,
(ii) long-term evolution of neutron stars of a high-amplitude damping
oscillation accompanied with shock formation, (iii) collapse of unstable
neutron stars to black holes, and (iv) stellar collapses to neutron stars. The
tests (i)--(iii) were carried out with the -law equation of state, and
the test (iv) with a more realistic parametric equation of state for
high-density matter. We found that this new implementation works very well: It
is possible to perform the simulations for stable neutron stars for more than
10 dynamical time scales, to capture strong shocks formed at stellar core
collapses, and to accurately compute the mass of black holes formed after the
collapse and subsequent accretion. In conclusion, this implementation is robust
enough to apply to astrophysical problems such as stellar core collapse of
massive stars to a neutron star and black hole, phase transition of a neutron
star to a high-density star, and accretion-induced collapse of a neutron star
to a black hole. The result for the first simulation of stellar core collapse
to a neutron star started from a realistic initial condition is also presented.Comment: 28 pages, to appear in PRD 67, 0440XX (2003
- …
