145 research outputs found
Task Switching and Single vs. Multiple Alarms for Supervisory Control of Multiple Robots
Foraging tasks, such as search and rescue or reconnaissance, in which UVs are either relatively sparse and unlikely to interfere with one another or employ automated path planning, form a broad class of applications in which multiple robots can be controlled sequen-tially in a round-robin fashion. Such human-robot systems can be described as a queuing sys-tem in which the human acts as a server while robots presenting requests for service are the jobs. The possibility of improving system performance through well-known scheduling tech-niques is an immediate consequence. Unfortunately, real human-multirobot systems are more complex often requiring operator monitoring and other ancillary tasks. Improving perfor-mance through scheduling (jobs) under these conditions requires minimizing the effort ex-pended monitoring and directing the operator’s attention to the robot offering the most gain. Two experiments investigating scheduling interventions are described. The first compared a system in which all anomalous robots were alarmed (Open-queue), one in which alarms were presented singly in the order in which they arrived (FIFO) and a Control condition without alarms. The second experiment employed failures of varying difficulty supporting an optimal shortest job first (SJF) policy. SJF, FIFO, and Open-queue conditions were compared. In both experiments performance in directed attention conditions was poorer than predicted. A possi-ble explanation based on effects of volition in task switching is propose
Loss of viability during freeze-thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis
10.1007/s11373-005-9051-9Journal of Biomedical Science133433-44
Search for composite and exotic fermions at LEP 2
A search for unstable heavy fermions with the DELPHI detector at LEP is
reported. Sequential and non-canonical leptons, as well as excited leptons and
quarks, are considered. The data analysed correspond to an integrated
luminosity of about 48 pb^{-1} at an e^+e^- centre-of-mass energy of 183 GeV
and about 20 pb^{-1} equally shared between the centre-of-mass energies of 172
GeV and 161 GeV. The search for pair-produced new leptons establishes 95%
confidence level mass limits in the region between 70 GeV/c^2 and 90 GeV/c^2,
depending on the channel. The search for singly produced excited leptons and
quarks establishes upper limits on the ratio of the coupling of the excited
fermio
Search for lightest neutralino and stau pair production in light gravitino scenarios with stau NLSP
Promptly decaying lightest neutralinos and long-lived staus are searched for
in the context of light gravitino scenarios. It is assumed that the stau is the
next to lightest supersymmetric particle (NLSP) and that the lightest
neutralino is the next to NLSP (NNLSP). Data collected with the Delphi detector
at centre-of-mass energies from 161 to 183 \GeV are analysed. No evidence of
the production of these particles is found. Hence, lower mass limits for both
kinds of particles are set at 95% C.L.. The mass of gaugino-like neutralinos is
found to be greater than 71.5 GeV/c^2. In the search for long-lived stau,
masses less than 70.0 to 77.5 \GeVcc are excluded for gravitino masses from 10
to 150 \eVcc . Combining this search with the searches for stable heavy leptons
and Minimal Supersymmetric Standard Model staus a lower limit of 68.5 \GeVcc
may be set for the stau mas
The SEQC2 epigenomics quality control (EpiQC) study
BACKGROUND: Cytosine modifications in DNA such as 5-methylcytosine (5mC) underlie a broad range of developmental processes, maintain cellular lineage specification, and can define or stratify types of cancer and other diseases. However, the wide variety of approaches available to interrogate these modifications has created a need for harmonized materials, methods, and rigorous benchmarking to improve genome-wide methylome sequencing applications in clinical and basic research. Here, we present a multi-platform assessment and cross-validated resource for epigenetics research from the FDA's Epigenomics Quality Control Group. RESULTS: Each sample is processed in multiple replicates by three whole-genome bisulfite sequencing (WGBS) protocols (TruSeq DNA methylation, Accel-NGS MethylSeq, and SPLAT), oxidative bisulfite sequencing (TrueMethyl), enzymatic deamination method (EMSeq), targeted methylation sequencing (Illumina Methyl Capture EPIC), single-molecule long-read nanopore sequencing from Oxford Nanopore Technologies, and 850k Illumina methylation arrays. After rigorous quality assessment and comparison to Illumina EPIC methylation microarrays and testing on a range of algorithms (Bismark, BitmapperBS, bwa-meth, and BitMapperBS), we find overall high concordance between assays, but also differences in efficiency of read mapping, CpG capture, coverage, and platform performance, and variable performance across 26 microarray normalization algorithms. CONCLUSIONS: The data provided herein can guide the use of these DNA reference materials in epigenomics research, as well as provide best practices for experimental design in future studies. By leveraging seven human cell lines that are designated as publicly available reference materials, these data can be used as a baseline to advance epigenomics research
The AURORA Study: a longitudinal, multimodal library of brain biology and function after traumatic stress exposure
Adverse posttraumatic neuropsychiatric sequelae (APNS) are common among civilian trauma survivors and military veterans. These APNS, as traditionally classified, include posttraumatic stress, postconcussion syndrome, depression, and regional or widespread pain. Traditional classifications have come to hamper scientific progress because they artificially fragment APNS into siloed, syndromic diagnoses unmoored to discrete components of brain functioning and studied in isolation. These limitations in classification and ontology slow the discovery of pathophysiologic mechanisms, biobehavioral markers, risk prediction tools, and preventive/treatment interventions. Progress in overcoming these limitations has been challenging because such progress would require studies that both evaluate a broad spectrum of posttraumatic sequelae (to overcome fragmentation) and also perform in-depth biobehavioral evaluation (to index sequelae to domains of brain function). This article summarizes the methods of the Advancing Understanding of RecOvery afteR traumA (AURORA) Study. AURORA conducts a large-scale (n = 5000 target sample) in-depth assessment of APNS development using a state-of-the-art battery of self-report, neurocognitive, physiologic, digital phenotyping, psychophysical, neuroimaging, and genomic assessments, beginning in the early aftermath of trauma and continuing for 1 year. The goals of AURORA are to achieve improved phenotypes, prediction tools, and understanding of molecular mechanisms to inform the future development and testing of preventive and treatment interventions
Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO
The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages
- …