20 research outputs found

    Wavelet analysis of surface current vector fields measured by high frequency Doppler radar

    No full text
    Fourier spectral methods have been widely applied to coastal zone current measurements. However in cases such as riverine tides or estuarine outflow currents exhibit non-stationary characteristics which invalidate the basic assumptions of these methods. Wavelet analysis techniques can be used to determine the temporal evolution of current variance over a range of frequency scales and therefore can provide an improved understanding of event-driven dynamics. Morlet continuous-wavelet transforms were applied to multiple vector time-series measurements from a High Frequency (HF) Doppler radar and moored ADCPs near the mouth of Chesapeake Bay in 1996 and 1997 as well as wind measurements at the Chesapeake Light tower. The time-varying clockwise (CW) and counter-clockwise (CCW) wavelet spectra were computed from each vector time-series. The horizontal, vertical and temporal evolution of high energy scales could then be visualized. Significant short-term intensifications of 30-60 hour CW energy in the region of the outfall plume were observed that were highly coherent with local wind forcing

    An EOF analysis of HF Doppler radar current measurements of the Chesapeake Bay buoyant outflow

    No full text
    Surface currents measured by HF Doppler radar as part of a study of the Chesapeake Bay outflow plume are examined using a ‘real-vector’ empirical orthogonal function (EOF) analysis (Kaihatu et al., 1998). Based on about 23 days of nearly continuous data, the analysis shows that the first three EOF modes, judged to be the only significant modes, account for 76% of the variance in the data set. The buoyant outflow occurs primarily in the mean flow field. The first EOF mode is dominated by wind forcing and the second mode by across-shelf semi-diurnal tidal forcing. The third mode exhibits a large-scale horizontal shear and contains a curved region of weak relative flow which appears to delineate the offshore edge of the plume; also, the third-mode response varies over the spring-neap cycle, suggesting a modulation of the outflow plume by a tidal residual eddy. The analysis therefore has provided a useful, exploratory examination of this dataset of surface currents
    corecore