1,935 research outputs found
Super-Alfv\'enic propagation of reconnection signatures and Poynting flux during substorms
The propagation of reconnection signatures and their associated energy are
examined using kinetic particle-in-cell simulations and Cluster satellite
observations. It is found that the quadrupolar out-of-plane magnetic field near
the separatrices is associated with a kinetic Alfv\'en wave. For magnetotail
parameters, the parallel propagation of this wave is super-Alfv\'enic
(V_parallel ~ 1500 - 5500 km/s) and generates substantial Poynting flux (S ~
10^-5 - 10^-4 W/m^2) consistent with Cluster observations of magnetic
reconnection. This Poynting flux substantially exceeds that due to frozen-in
ion bulk outflows and is sufficient to generate white light aurora in the
Earth's ionosphere.Comment: Submitted to PRL on 11/1/2010. Resubmitted on 4/5/201
Expatriate Adjustment and Effectiveness: The Mediating Role of Managerial Practices
The purpose of this study was to examine the mediating effects of relations-oriented managerial behaviors on the relationship between two modes of expatriate adjustment—role innovation and personal change—and contextual performance. Using data from 194 expatriates and 505 of their subordinates, we found evidence of full mediation for the role innovation-performance relationship. For ratings of expatriate effectiveness, recognizing and team building behaviors appear to fully mediate the role innovation-performance relationship. For ratings of supervisor satisfaction, inspiring, supporting, and team building appear to fully mediate the role innovation-performance relationship. No significant results were found for the personal change-performance relationship. The results provide insights for extending current models of the expatriate adjustment process, and understanding the means by which expatriates fulfill their responsibilities
Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence
Using kinetic particle-in-cell (PIC) simulations, we simulate reconnection
conditions appropriate for the magnetosheath and solar wind, i.e., plasma beta
(ratio of gas pressure to magnetic pressure) greater than 1 and low magnetic
shear (strong guide field). Changing the simulation domain size, we find that
the ion response varies greatly. For reconnecting regions with scales
comparable to the ion Larmor radius, the ions do not respond to the
reconnection dynamics leading to ''electron-only'' reconnection with very large
quasi-steady reconnection rates. The transition to more traditional
''ion-coupled'' reconnection is gradual as the reconnection domain size
increases, with the ions becoming frozen-in in the exhaust when the magnetic
island width in the normal direction reaches many ion inertial lengths. During
this transition, the quasi-steady reconnection rate decreases until the ions
are fully coupled, ultimately reaching an asymptotic value. The scaling of the
ion outflow velocity with exhaust width during this electron-only to
ion-coupled transition is found to be consistent with a theoretical model of a
newly reconnected field line. In order to have a fully frozen-in ion exhaust
with ion flows comparable to the reconnection Alfv\'en speed, an exhaust width
of at least several ion inertial lengths is needed. In turbulent systems with
reconnection occurring between magnetic bubbles associated with fluctuations,
using geometric arguments we estimate that fully ion-coupled reconnection
requires magnetic bubble length scales of at least several tens of ion inertial
lengths
On the Cause of Supra-Arcade Downflows in Solar Flares
A model of supra-arcade downflows (SADs), dark low density regions also known
as tadpoles that propagate sunward during solar flares, is presented. It is
argued that the regions of low density are flow channels carved by
sunward-directed outflow jets from reconnection. The solar corona is
stratified, so the flare site is populated by a lower density plasma than that
in the underlying arcade. As the jets penetrate the arcade, they carve out
regions of depleted plasma density which appear as SADs. The present
interpretation differs from previous models in that reconnection is localized
in space but not in time. Reconnection is continuous in time to explain why
SADs are not filled in from behind as they would if they were caused by
isolated descending flux tubes or the wakes behind them due to temporally
bursty reconnection. Reconnection is localized in space because outflow jets in
standard two-dimensional reconnection models expand in the normal (inflow)
direction with distance from the reconnection site, which would not produce
thin SADs as seen in observations. On the contrary, outflow jets in spatially
localized three-dimensional reconnection with an out-of-plane (guide) magnetic
field expand primarily in the out-of-plane direction and remain collimated in
the normal direction, which is consistent with observed SADs being thin.
Two-dimensional proof-of-principle simulations of reconnection with an
out-of-plane (guide) magnetic field confirm the creation of SAD-like depletion
regions and the necessity of density stratification. Three-dimensional
simulations confirm that localized reconnection remains collimated.Comment: 16 pages, 5 figures, accepted to Astrophysical Journal Letters in
August, 2013. This version is the accepted versio
Two-scale structure of the electron dissipation region during collisionless magnetic reconnection
Particle in cell (PIC) simulations of collisionless magnetic reconnection are
presented that demonstrate that the electron dissipation region develops a
distinct two-scale structure along the outflow direction. The length of the
electron current layer is found to decrease with decreasing electron mass,
approaching the ion inertial length for a proton-electron plasma. A surprise,
however, is that the electrons form a high-velocity outflow jet that remains
decoupled from the magnetic field and extends large distances downstream from
the x-line. The rate of reconnection remains fast in very large systems,
independent of boundary conditions and the mass of electrons.Comment: Submitted to Physical Review Letters, 4 pages, 4 figure
From Solar and Stellar Flares to Coronal Heating: Theory and Observations of How Magnetic Reconnection Regulates Coronal Conditions
There is currently no explanation of why the corona has the temperature and
density it has. We present a model which explains how the dynamics of magnetic
reconnection regulates the conditions in the corona. A bifurcation in magnetic
reconnection at a critical state enforces an upper bound on the coronal
temperature for a given density. We present observational evidence from 107
flares in 37 sun-like stars that stellar coronae are near this critical state.
The model may be important to self-organized criticality models of the solar
corona.Comment: 13 pages, 2 figures, accepted to Ap. J. Lett., February 200
- …