56,146 research outputs found

    Distributed Nonparametric Sequential Spectrum Sensing under Electromagnetic Interference

    Full text link
    A nonparametric distributed sequential algorithm for quick detection of spectral holes in a Cognitive Radio set up is proposed. Two or more local nodes make decisions and inform the fusion centre (FC) over a reporting Multiple Access Channel (MAC), which then makes the final decision. The local nodes use energy detection and the FC uses mean detection in the presence of fading, heavy-tailed electromagnetic interference (EMI) and outliers. The statistics of the primary signal, channel gain or the EMI is not known. Different nonparametric sequential algorithms are compared to choose appropriate algorithms to be used at the local nodes and the FC. Modification of a recently developed random walk test is selected for the local nodes for energy detection as well as at the fusion centre for mean detection. It is shown via simulations and analysis that the nonparametric distributed algorithm developed performs well in the presence of fading, EMI and is robust to outliers. The algorithm is iterative in nature making the computation and storage requirements minimal.Comment: 8 pages; 6 figures; Version 2 has the proofs for the theorems. Version 3 contains a new section on approximation analysi

    Groundwater research and management: integrating science into management decisions. Proceedings of IWMI-ITP-NIH International Workshop on "Creating Synergy Between Groundwater Research and Management in South and Southeast Asia," Roorkee, India, 8-9 February 2005

    Get PDF
    Groundwater management / Governance / Groundwater development / Artificial recharge / Water quality / Aquifers / Groundwater irrigation / Water balance / Simulation models / Watershed management / Water harvesting / Decision making / South East Asia / Bangladesh / China / India / Nepal / Pakistan / Syria

    The Crystallography of Strange Quark Matter

    Get PDF
    Cold three-flavor quark matter at large (but not asymptotically large) densities may exist as a crystalline color superconductor. We explore this possibility by calculating the gap parameter Delta and free energy Omega(Delta) for possible crystal structures within a Ginzburg-Landau approximation, evaluating Omega(Delta) to order Delta^6. We develop a qualitative understanding of what makes a crystal structure stable, and find two structures with particularly large values of Delta and the condensation energy, within a factor of two of those for the CFL phase known to characterize QCD at asymptotically large densities. The robustness of these phases results in their being favored over wide ranges of density and though it also implies that the Ginzburg-Landau approximation is not quantitatively reliable, previous work suggests that it can be trusted for qualitative comparisons between crystal structures. We close with a look ahead at the calculations that remain to be done in order to make contact with observed pulsar glitches and neutron star cooling.Comment: 6 pages, 3 figures. Contribution to the proceedings of Strangeness in Quark Matter 2006, UCLA. Talk given by Rishi Sharm
    corecore