19 research outputs found

    Local therapy with CpG motifs in a murine model of allergic airway inflammation in IFN-β knock-out mice

    Get PDF
    BACKGROUND: CpG oligodeoxynucleotides (CpG-ODN) are capable of inducing high amounts of type I IFNs with many immunomodulatory properties. Furthermore, type-I IFNs have been proposed to play a key role in mediating effects of CpG-ODN. The precise role of IFN-β in the immunomodulatory effects of CpG-ODN is not known. OBJECTIVE: Here, we aimed to elucidate the role of IFN-β in the anti-allergic effect of CpG motifs. METHODS: We assessed the immune response in OVA-primed/OVA-challenged IFN-β knockout (-/-) mice compared to wild type (WT) control, after intranasal and systemic treatment with synthetic CpG motifs. RESULTS: Vaccination with CpG-ODN reduced the number of cells in airways of OVA-sensitized WT but not IFN-β-/- mice. Although airway eosinophilia was reduced in both treated groups, they were significantly higher in IFN-β(-)/- mice. Other inflammatory cells, such as lymphocytes and macrophages were enhanced in airways by CpG treatment in IFN-β-/- mice. The ratio of IFN-γ/IL-4 cytokines in airways was significantly skewed to a Th1 response in WT compared to IFN-β(-)/- group. In contrast, IL-4 and IgE were reduced with no differences between groups. Ag-specific T-cell proliferation, Th1-cytokines such as IFN-γ, IL-2 and also IL-12 were significantly lower in IFN-β-/- mice. Surprisingly, we discovered that intranasal treatment of mice with CpG-ODN results in mild synovitis particularly in IFN-β-/- mice. CONCLUSION: Our results indicate that induction of Th1 response by therapy with CpG-ODN is only slightly and partially dependent on IFN-β, while IFN-β is not an absolute requirement for suppression of airway eosinophilia and IgE. Furthermore, our finding of mild synovitis is a warning for possible negative effects of CpG-ODN vaccination

    Increased airway responsiveness, allergy-type-I skin responses and systemic anaphylaxis in a humanized-severe combined immuno-deficiency mouse model

    No full text
    In patients with allergic bronchial asthma, a strong relationship between elevated serum IgE antibody titres and the development of increased airway responsiveness (AR) has been demonstrated. To further elucidate the relationship between human (hu) IgE and development of increased AR, we developed an in vivo model utilizing immuno-compromised severe combined immuno-deficiency (SCID) mice. SCID mice were either reconstituted with peripheral blood mononuclear cells (PBMC) from non-atopic, healthy or atopic individuals sensitized against house dust mite allergen (Der p), or passively sensitized with plasma from non-atopic, healthy or atopic individuals. In both systems, atopic hu-SCID mice developed increased AR. The following results suggest that these responses were mediated via IgE antibodies: increased AR did not occur after transfer of either PBMC or IgE-negative plasma from non-atopic individuals; increased AR occurred simultaneous with increased serotonin release detected 15 min after allergen-aerosol challenge in bronchoalveolar lavage fluid; and increased AR required at least two allergen-aerosol challenges. SCID mice reconstituted with serum containing anti-Der p IgE antibodies developed positive immediate-type skin test responses to intradermal injection of Der p as well as anti-hu-IgE antibody. In addition, IgE binding to skin mast cells was demonstrated by immunohistochemistry. Furthermore, intravenous challenge of hu anti-Der p positive SCID mice with Der p resulted in systemic anaphylaxis. These data provide evidence that passive immunization of SCID mice with hu IgE alters AR and that T cells and eosinophils were not a requirement for the development of increased AR in this model
    corecore