23 research outputs found

    The semi-classical expansion and resurgence in gauge theories: new perturbative, instanton, bion, and renormalon effects

    Get PDF
    We study the dynamics of four dimensional gauge theories with adjoint fermions for all gauge groups, both in perturbation theory and non-perturbatively, by using circle compactification with periodic boundary conditions for the fermions. There are new gauge phenomena. We show that, to all orders in perturbation theory, many gauge groups are Higgsed by the gauge holonomy around the circle to a product of both abelian and nonabelian gauge group factors. Non-perturbatively there are monopole-instantons with fermion zero modes and two types of monopole-anti-monopole molecules, called bions. One type are "magnetic bions" which carry net magnetic charge and induce a mass gap for gauge fluctuations. Another type are "neutral bions" which are magnetically neutral, and their understanding requires a generalization of multi-instanton techniques in quantum mechanics - which we refer to as the Bogomolny-Zinn-Justin (BZJ) prescription - to compactified field theory. The BZJ prescription applied to bion-anti-bion topological molecules predicts a singularity on the positive real axis of the Borel plane (i.e., a divergence from summing large orders in peturbation theory) which is of order N times closer to the origin than the leading 4-d BPST instanton-anti-instanton singularity, where N is the rank of the gauge group. The position of the bion--anti-bion singularity is thus qualitatively similar to that of the 4-d IR renormalon singularity, and we conjecture that they are continuously related as the compactification radius is changed. By making use of transseries and Ecalle's resurgence theory we argue that a non-perturbative continuum definition of a class of field theories which admit semi-classical expansions may be possible.Comment: 112 pages, 7 figures; v2: typos corrected, discussion of supersymmetric models added at the end of section 8.1, reference adde

    Conflict of Interest in Clinical Practice Guideline Development: A Systematic Review

    Get PDF
    Background: There is an emerging literature on the existence and effect of industry relationships on physician and researcher behavior. Much less is known, however, about the effects of these relationships and other conflicts of interest (COI) on clinical practice guideline (CPG) development and recommendations. We performed a systematic review of the prevalence of COI and its effect on CPG recommendations. Methodology/Principal Findings: We searched Medline (1980 to March, 2011) for studies that examined the effect of COI on CPG development and/or recommendations. Data synthesis was qualitative. Twelve studies fulfilled inclusion criteria; 9 were conducted in the US. All studies reported on financial relationships of CPG authors with the pharmaceutical industry; 1 study also examined relationships with diagnostic testing and insurance companies. The majority of guidelines had authors with industry affiliations, including consultancies (authors with relationship, range 6–80%); research support (4–78%); equity/stock ownership (2–17%); or any COI (56–87%). Four studies reported multiple types of financial interactions for individual authors (number of types per author: range 2 to 10 or more). Data on the effect of COI on CPG recommendations were confined to case studies wherein authors with specific financial ties appeared to benefit from the related CPG recommendations. In a single study, few authors believed that their relationships influenced their recommendations. No studies reported on intellectual COI in CPGs

    Silencing Nuclear Pore Protein Tpr Elicits a Senescent-Like Phenotype in Cancer Cells

    Get PDF
    Background: Tpr is a large coiled-coil protein located in the nuclear basket of the nuclear pore complex for which many different functions were proposed from yeast to human. Methodology/Principal Findings: Here we show that depletion of Tpr by RNA interference triggers G0–G1 arrest and ultimately induces a senescent-like phenotype dependent on the presence of p53. We also found that Tpr depletion impairs the NES [nuclear export sequence]-dependent nuclear export of proteins and causes partial co-depletion of Nup153. In addition Tpr depletion impacts on level and function of the SUMO-protease SENP2 thus affecting SUMOylation regulation at the nuclear pore and overall SUMOylation in the cell. Conclusions: Our data for the first time provide evidence that a nuclear pore component plays a role in controlling cellular senescence. Our findings also point to new roles for Tpr in the regulation of SUMO-1 conjugation at the nuclear pore and directly confirm Tpr involvement in the nuclear export of NES-proteins

    Visual attention and action: How cueing, direct mapping, and social interactions drive orienting

    Get PDF
    Despite considerable interest in both action perception and social attention over the last 2 decades, there has been surprisingly little investigation concerning how the manual actions of other humans orient visual attention. The present review draws together studies that have measured the orienting of attention, following observation of another’s goal-directed action. Our review proposes that, in line with the literature on eye gaze, action is a particularly strong orienting cue for the visual system. However, we additionally suggest that action may orient visual attention using mechanisms, which gaze direction does not (i.e., neural direct mapping and corepresentation). Finally, we review the implications of these gaze-independent mechanisms for the study of attention to action. We suggest that our understanding of attention to action may benefit from being studied in the context of joint action paradigms, where the role of higher level action goals and social factors can be investigated

    Radiation therapy and the innate immune response: Clinical implications for immunotherapy approaches

    No full text
    Radiation therapy is an essential component of cancer care, contributing up to 40% of curative cancer treatment regimens. It creates DNA double‐strand breaks causing cell death in highly replicating tumour cells. However, tumours can develop acquired resistance to therapy. The efficiency of radiation treatment has been increased by means of combining it with other approaches such as chemotherapy, molecule‐targeted therapies and, in recent years, immunotherapy (IT). Cancer‐cell apoptosis after radiation treatment causes an immunological reaction that contributes to eradicating the tumour via antigen presentation and subsequent T‐cell activation. By contrast, radiotherapy also contributes to the formation of an immunosuppressive environment that hinders the efficacy of the therapy. Innate immune cells from myeloid and lymphoid origin show a very active role in both acquired resistance and antitumourigenic mechanisms. Therefore, many efforts are being made in order to reach a better understanding of the innate immunity reactions after radiation therapy (RT) and the design of new combinatorial IT strategies focused in these particular populations
    corecore