61 research outputs found

    An optoelectronic framework enabled by low-dimensional phase-change films.

    Get PDF
    Accepted author version. The definitive version was published in: Nature 511, 206–211 (10 July 2014) doi:10.1038/nature13487The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states--amorphous and crystalline--in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young's modulus. The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films. This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent 'smart' glasses, 'smart' contact lenses and artificial retina devices.Engineering and Physical Sciences Research Council (EPSRC)OUP John Fell Fun

    HIV-1 Replication in the Central Nervous System Occurs in Two Distinct Cell Types

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) can lead to the development of HIV-1-associated dementia (HAD). We examined the virological characteristics of HIV-1 in the cerebrospinal fluid (CSF) of HAD subjects to explore the association between independent viral replication in the CNS and the development of overt dementia. We found that genetically compartmentalized CCR5-tropic (R5) T cell-tropic and macrophage-tropic HIV-1 populations were independently detected in the CSF of subjects diagnosed with HIV-1-associated dementia. Macrophage-tropic HIV-1 populations were genetically diverse, representing established CNS infections, while R5 T cell-tropic HIV-1 populations were clonally amplified and associated with pleocytosis. R5 T cell-tropic viruses required high levels of surface CD4 to enter cells, and their presence was correlated with rapid decay of virus in the CSF with therapy initiation (similar to virus in the blood that is replicating in activated T cells). Macrophage-tropic viruses could enter cells with low levels of CD4, and their presence was correlated with slow decay of virus in the CSF, demonstrating a separate long-lived cell as the source of the virus. These studies demonstrate two distinct virological states inferred from the CSF virus in subjects diagnosed with HAD. Finally, macrophage-tropic viruses were largely restricted to the CNS/CSF compartment and not the blood, and in one case we were able to identify the macrophage-tropic lineage as a minor variant nearly two years before its expansion in the CNS. These results suggest that HIV-1 variants in CSF can provide information about viral replication and evolution in the CNS, events that are likely to play an important role in HIV-associated neurocognitive disorders

    Patterns, trends and sex differences in HIV/AIDS reported mortality in Latin American countries: 1996-2007

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>International cohort studies have shown that antiretroviral treatment (ART) has improved survival of HIV-infected individuals. National population based studies of HIV mortality exist in industrialized settings but few have been presented from developing countries. Our objective was to investigate on a population basis, the regional situation regarding HIV mortality and trends in Latin America (LA) in the context of adoption of public ART policies and gender differences.</p> <p>Methods</p> <p>Cause of death data from vital statistics registries from 1996 to 2007 with "good" or "average" quality of mortality data were examined. Standardized mortality rates and Poisson regression models by country were developed and differences among countries assessed to identify patterns of HIV mortality over time occurring in Latin America.</p> <p>Results</p> <p>Standardized HIV mortality following the adoption of public ART policies was highest in Panama and El Salvador and lowest in Chile. During the study period, three overall patterns were identified in HIV mortality trends- following the adoption of the free ART public policies; a remarkable decrement, a remarkable increment and a slight increment. HIV mortality was consistently higher in males compared to females. Mean age of death attributable to HIV increased in the majority of countries over the study period.</p> <p>Conclusions</p> <p>Vital statistics registries provide valuable information on HIV mortality in LA. While the introduction of national policies for free ART provision has coincided with declines in population-level HIV mortality and increasing age of death in some countries, in others HIV mortality has increased. Barriers to effective ART implementation and uptake in the context of free ART public provision policies should be further investigated.</p

    Modulating RNA structure and catalysis: lessons from small cleaving ribozymes

    Get PDF
    RNA is a key molecule in life, and comprehending its structure/function relationships is a crucial step towards a more complete understanding of molecular biology. Even though most of the information required for their correct folding is contained in their primary sequences, we are as yet unable to accurately predict both the folding pathways and active tertiary structures of RNA species. Ribozymes are interesting molecules to study when addressing these questions because any modifications in their structures are often reflected in their catalytic properties. The recent progress in the study of the structures, the folding pathways and the modulation of the small ribozymes derived from natural, self-cleaving, RNA motifs have significantly contributed to today’s knowledge in the field
    corecore