13 research outputs found

    Cytotoxic isolates of Helicobacter pylori from Peptic Ulcer Diseases decrease K(+)-dependent ATPase Activity in HeLa cells

    Get PDF
    BACKGROUND: Helicobacter pylori is a Gram negative bacterium that plays a central role in the etiology of chronic gastritis and peptic ulcer diseases. However, not all H. pylori positive cases develop advanced disease. This discriminatory behavior has been attributed to the difference in virulence of the bacteria. Among all virulence factors, cytotoxin released by H. pylori is the most important factor. In this work, we studied variation in H. pylori isolates from Indian dyspeptic patients on the basis of cytotoxin production and associated changes in K(+)-dependent ATPase (one of its targets) enzyme activity in HeLa cells. METHODS: The patients were retrospectively grouped on the basis of endoscopic and histopathological observation as having gastritis or peptic ulcer. The HeLa cells were incubated with the broth culture filtrates (BCFs) of H. pylori isolates from patients of both groups and observed for the cytopathic effects: morphological changes and viability. In addition, the K(+)-dependent ATPase activity was measured in HeLa cells extracts. RESULTS: The cytotoxin production was observed in 3/7 (gastritis) and 4/4 (peptic ulcer) H. pylori isolates. The BCFs of cytotoxin producing H. pylori strains reduced the ATPase activity of HeLa cells to 40% of that measured with non-cytotoxin producing H. pylori strains (1.33 μmole Pi/mg protein and 3.36 μmole Pi/mg protein, respectively, p < 0.05). The decreased activity of ATPase enzyme or the release of cytotoxin also correlated with the increased pathogenicity indices of the patients. CONCLUSIONS: Our results suggest that the isolation of cytotoxic H. pylori is more common in severe form of acid peptic diseases (peptic ulcer) than in gastritis patients from India. Also the cytotoxin released by H. pylori impairs the ion-transporting ATPase and is a measure of cytotoxicity

    Fine-Scale Phylogeographic Structure of Borrelia lusitaniae Revealed by Multilocus Sequence Typing

    Get PDF
    Borrelia lusitaniae is an Old World species of the Lyme borreliosis (LB) group of tick-borne spirochetes and prevails mainly in countries around the Mediterranean Basin. Lizards of the family Lacertidae have been identified as reservoir hosts of B. lusitaniae. These reptiles are highly structured geographically, indicating limited migration. In order to examine whether host geographic structure shapes the evolution and epidemiology of B. lusitaniae, we analyzed the phylogeographic population structure of this tick-borne bacterium using a recently developed multilocus sequence typing (MLST) scheme based on chromosomal housekeeping genes. A total of 2,099 questing nymphal and adult Ixodes ricinus ticks were collected in two climatically different regions of Portugal, being ∼130 km apart. All ticks were screened for spirochetes by direct PCR. Attempts to isolate strains yielded 16 cultures of B. lusitaniae in total. Uncontaminated cultures as well as infected ticks were included in this study. The results using MLST show that the regional B. lusitaniae populations constitute genetically distinct populations. In contrast, no clear phylogeographic signals were detected in sequences of the commonly used molecular markers ospA and ospC. The pronounced population structure of B. lusitaniae over a short geographic distance as captured by MLST of the housekeeping genes suggests that the migration rates of B. lusitaniae are rather low, most likely because the distribution of mediterranean lizard populations is highly parapatric. The study underlines the importance of vertebrate hosts in the geographic spread of tick-borne microparasites
    corecore