7 research outputs found

    HP1-Mediated Formation of Alternative Lengthening of Telomeres-Associated PML Bodies Requires HIRA but Not ASF1a

    Get PDF
    Approximately 10% of cancers use recombination-mediated Alternative Lengthening of Telomeres (ALT) instead of telomerase to prevent telomere shortening. A characteristic of cells that utilize ALT is the presence of ALT-associated PML nuclear bodies (APBs) containing (TTAGGG)n DNA, telomere binding proteins, DNA recombination proteins, and heterochromatin protein 1 (HP1). The function of APBs is unknown and it is possible that they are functionally heterogeneous. Most ALT cells lack functional p53, and restoration of the p53/p21 pathway in these cells results in growth arrest/senescence and a substantial increase in the number of large APBs that is dependent on two HP1 isoforms, HP1α and HP1γ. Here we investigated the mechanism of HP1-mediated APB formation, and found that histone chaperones, HIRA and ASF1a, are present in APBs following activation of the p53/p21 pathway in ALT cells. HIRA and ASF1a were also found to colocalize inside PML bodies in normal fibroblasts approaching senescence, providing evidence for the existence of a senescence-associated ASF1a/HIRA complex inside PML bodies, consistent with a role for these proteins in induction of senescence in both normal and ALT cells. Moreover, knockdown of HIRA but not ASF1a significantly reduced p53-mediated induction of large APBs, with a concomitant reduction of large HP1 foci. We conclude that HIRA, in addition to its physical and functional association with ASF1a, plays a unique, ASF1a-independent role, which is required for the localization of HP1 to PML bodies and thus for APB formation

    Analytical methods for inferring functional effects of single base pair substitutions in human cancers

    Get PDF
    Cancer is a genetic disease that results from a variety of genomic alterations. Identification of some of these causal genetic events has enabled the development of targeted therapeutics and spurred efforts to discover the key genes that drive cancer formation. Rapidly improving sequencing and genotyping technology continues to generate increasingly large datasets that require analytical methods to identify functional alterations that deserve additional investigation. This review examines statistical and computational approaches for the identification of functional changes among sets of single-nucleotide substitutions. Frequency-based methods identify the most highly mutated genes in large-scale cancer sequencing efforts while bioinformatics approaches are effective for independent evaluation of both non-synonymous mutations and polymorphisms. We also review current knowledge and tools that can be utilized for analysis of alterations in non-protein-coding genomic sequence

    Gliale Neoplasien

    No full text
    corecore