11 research outputs found

    Consequences of Starbursts for the Interstellar and Intergalactic Medium

    No full text
    Star formation in general, and starbursts in particular, drive the evolution of galaxies. To understand the process of galactic matter cycle quantitatively, it is absolutely necessary to follow the evolution of the components of the interstellar medium, such as gas, magnetic fields, cosmic rays in detail over sufficiently long time scales. Due to the non-linearity of the interactions between the various components, and the turbulent nature of the plasma, high resolution numerical simulations offer the best strategy to further our understanding. The results of our numerical studies can be summarized as follows: (i) Supernova explosions are the most important energy input sources in the ISM and lead to a high level of turbulence in the plasma, coupling structures on all scales, (ii) more than half of the disk mass resides in classically thermally unstable temperature regimes, (iii) turbulent mixing is the dominant energy transport process over a wide range of scales, (iv) proportionality between magnetic field and density is generally weak, except for the densest regions, (v) magnetic fields, even if they are parallel to the galactic disk, cannot prevent outflow into the halo, (vi) the ionization structure of the plasma depends on its thermal history, and is in general not in collisional ionization equilibrium, (vii) the cooling function varies in space and time, (viii) X-rays can be emitted even at plasma temperatures of the order of 104K due to delayed recombination, both in the disk and the halo, (ix) cosmic rays can help driving a galactic wind, (x) cosmic rays can be accelerated to high energies beyond 1015eV (the “knee”) in long lived shocks propagating into the galactic halo, because of time-dependent star formation

    Nonlinear Optics

    No full text
    This chapter provides a brief introduction into the basic nonlinear-optical phenomena and discusses some of the most significant recent advances and breakthroughs in nonlinear optics, as well as novel applications of nonlinear-optical processes and devices. Nonlinear optics is the area of optics that studies the interaction of light with matter in the regime where the response of the material system to the applied electromagnetic field is nonlinear in the amplitude of this field. At low light intensities, typical of non-laser sources, the properties of materials remain independent of the intensity of illumination. The superposition principle holds true in this regime, and light waves can pass through materials or be reflected from boundaries and interfaces without interacting with each other. Laser sources, on the other hand, can provide sufficiently high light intensities to modify the optical properties of materials. Light waves can then interact with each other, exchanging momentum and energy, and the superposition principle is no longer valid. This interaction of light waves can result in the generation of optical fields at new frequencies, including optical harmonics of incident radiation or sum- or difference-frequency signals

    The origin of galactic cosmic rays

    No full text

    Nonlinear Optics

    No full text
    corecore