64 research outputs found
Reduction in Phencyclidine Induced Sensorimotor Gating Deficits in the Rat Following Increased System Xc − Activity in the Medial Prefrontal Cortex
Rationale: Aspects of schizophrenia, including deficits in sensorimotor gating, have been linked to glutamate dysfunction and/or oxidative stress in the prefrontal cortex. System xc −, a cystine–glutamate antiporter, is a poorly understood mechanism that contributes to both cellular antioxidant capacity and glutamate homeostasis.
Objectives: Our goal was to determine whether increased system xc − activity within the prefrontal cortex would normalize a rodent measure of sensorimotor gating.
Methods: In situ hybridization was used to map messenger RNA (mRNA) expression of xCT, the active subunit of system xc −, in the prefrontal cortex. Prepulse inhibition was used to measure sensorimotor gating; deficits in prepulse inhibition were produced using phencyclidine (0.3–3 mg/kg, sc). N-Acetylcysteine (10–100 μM) and the system xc − inhibitor (S)-4-carboxyphenylglycine (CPG, 0.5 μM) were used to increase and decrease system xc − activity, respectively. The uptake of 14C-cystine into tissue punches obtained from the prefrontal cortex was used to assay system xc − activity.
Results: The expression of xCT mRNA in the prefrontal cortex was most prominent in a lateral band spanning primarily the prelimbic cortex. Although phencyclidine did not alter the uptake of 14C-cystine in prefrontal cortical tissue punches, intraprefrontal cortical infusion of N-acetylcysteine (10–100 μM) significantly reduced phencyclidine- (1.5 mg/kg, sc) induced deficits in prepulse inhibition. N-Acetylcysteine was without effect when coinfused with CPG (0.5 μM), indicating an involvement of system xc −.
Conclusions: These results indicate that phencyclidine disrupts sensorimotor gating through system xc − independent mechanisms, but that increasing cystine–glutamate exchange in the prefrontal cortex is sufficient to reduce behavioral deficits produced by phencyclidine
Pacific island regional preparedness for El Niño
The El Niño Southern Oscillation (ENSO) cycle is often blamed for disasters in Pacific island communities. From a disaster risk reduction (DRR) perspective, the challenges with the El Niño part of the ENSO cycle, in particular, are more related to inadequate vulnerability reduction within development than to ENSO-induced hazard influences. This paper analyses this situation, filling in a conceptual and geographic gap in El Niño-related research, by reviewing El Niño-related preparedness (the conceptual gap) for Pacific islands (the geographic gap). Through exploring El Niño impacts on Pacific island communities alongside their vulnerabilities, resiliences, and preparedness with respect to El Niño, El Niño is seen as a constructed discourse rather than as a damaging phenomenon, leading to suggestions for El Niño preparedness as DRR as part of development. Yet the attention which El Niño garners might bring resources to the Pacific region and its development needs, albeit in the short term while El Niño lasts. Conversely, the attention given to El Niño could shift blame from underlying causes of vulnerability to a hazard-centric viewpoint. Instead of focusing on one hazard-influencing phenomenon, opportunities should be created for the Pacific region to tackle wider DRR and development concerns
Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia
<p>Abstract</p> <p>Background</p> <p>We have previously reported that the expression of the messenger ribonucleic acid (mRNA) for the NR2A subunit of the N-methyl-D-aspartate (NMDA) class of glutamate receptor was decreased in a subset of inhibitory interneurons in the cerebral cortex in schizophrenia. In this study, we sought to determine whether a deficit in the expression of NR2A mRNA was present in the subset of interneurons that contain the calcium buffer parvalbumin (PV) and whether this deficit was associated with a reduction in glutamatergic inputs in the prefrontal cortex (PFC) in schizophrenia.</p> <p>Methods</p> <p>We examined the expression of NR2A mRNA, labeled with a <sup>35</sup>S-tagged riboprobe, in neurons that expressed PV mRNA, visualized with a digoxigenin-labeled riboprobe via an immunoperoxidase reaction, in twenty schizophrenia and twenty matched normal control subjects. We also immunohistochemically labeled the glutamatergic axon terminals with an antibody against vGluT1.</p> <p>Results</p> <p>The density of the PV neurons that expressed NR2A mRNA was significantly decreased by 48-50% in layers 3 and 4 in the subjects with schizophrenia, but the cellular expression of NR2A mRNA in the PV neurons that exhibited a detectable level of this transcript was unchanged. In addition, the density of vGluT1-immunoreactive boutons was significantly decreased by 79% in layer 3, but was unchanged in layer 5 of the PFC in schizophrenia.</p> <p>Conclusion</p> <p>These findings suggest that glutamatergic neurotransmission via NR2A-containing NMDA receptors on PV neurons in the PFC may be deficient in schizophrenia. This may disinhibit the postsynaptic excitatory circuits, contributing to neuronal injury, aberrant information flow and PFC functional deficits in schizophrenia.</p
Modeling the Instantaneous Pressure–Volume Relation of the Left Ventricle: A Comparison of Six Models
Simulations are useful to study the heart’s ability to generate flow and the interaction between contractility and loading conditions. The left ventricular pressure–volume (PV) relation has been shown to be nonlinear, but it is unknown whether a linear model is accurate enough for simulations. Six models were fitted to the PV-data measured in five sheep and the estimated parameters were used to simulate PV-loops. Simulated and measured PV-loops were compared with the Akaike information criterion (AIC) and the Hamming distance, a measure for geometric shape similarity. The compared models were: a time-varying elastance model with fixed volume intercept (LinFix); a time-varying elastance model with varying volume intercept (LinFree); a Langewouter’s pressure-dependent elasticity model (Langew); a sigmoidal model (Sigm); a time-varying elastance model with a systolic flow-dependent resistance (Shroff) and a model with a linear systolic and an exponential diastolic relation (Burkh). Overall, the best model is LinFree (lowest AIC), closely followed by Langew. The remaining models rank: Sigm, Shroff, LinFix and Burkh. If only the shape of the PV-loops is important, all models perform nearly identically (Hamming distance between 20 and 23%). For realistic simulation of the instantaneous PV-relation a linear model suffices
Fluid Intelligence and Psychosocial Outcome: From Logical Problem Solving to Social Adaptation
While fluid intelligence has proved to be central to executive functioning, logical reasoning and other frontal functions, the role of this ability in psychosocial adaptation has not been well characterized.Lower fluid intelligence scores were associated with physical violence, both in the role of victim and victimizer. Drug intake, especially cannabis, cocaine and inhalants and lower self-esteem were also associated with lower fluid intelligence. Finally, scores on the perceived mental health assessment were better when fluid intelligence scores were higher.Our results show evidence of a strong association between psychosocial adaptation and fluid intelligence, suggesting that the latter is not only central to executive functioning but also forms part of a more general capacity for adaptation to social contexts
Branding the Rodeo: A Case Study of Tobacco Sports Sponsorship
Rodeo is one of the few sports still sponsored by the tobacco industry, particularly the US Smokeless Tobacco Company. Rodeo is popular in rural communities, where smokeless tobacco use is more prevalent
- …