29 research outputs found

    Mitral valve prolapse associated with celiac artery stenosis: a new ultrasonographic syndrome?

    Get PDF
    BACKGROUND: Celiac artery stenosis (CAS) may be caused by atherosclerotic degeneration or compression exerted by the arched ligament of the diaphragm. Mitral valve prolapse (MVP) is the most common valvular disorder. There are no reports on an association between CAS and MVP. METHODS: 1560 (41%) out of 3780 consecutive patients undergoing echocardiographic assessment of MVP, had Doppler sonography of the celiac tract to detect CAS. RESULTS: CAS was found in 57 (3.7%) subjects (23 males and 34 females) none of whom complained of symptoms related to visceral ischemia. MVP was observed in 47 (82.4%) subjects with and 118 (7.9%) without CAS (p < 0.001). The agreement between MVP and CAS was 39% (95% CI 32–49%). PSV (Peak Systolic Velocity) was the only predictor of CAS in MPV patients (OR 0.24, 95% CI 0.08–0.69) as selected in a multivariate logistic model. CONCLUSION: CAS and MVP seem to be significantly associated in patients undergoing consecutive ultrasonographic screening

    Shear-induced endothelial cell-cell junction inclination

    No full text
    Atheroprone regions of the arterial circulation are characterized by time-varying, reversing, and oscillatory wall shear stress. Several in vivo and in vitro studies have demonstrated that flow reversal (retrograde flow) is atherogenic and proinflammatory. The molecular and structural basis for the sensitivity of the endothelium to flow direction, however, has yet to be determined. It has been hypothesized that the ability to sense flow direction is dependent on the direction of inclination of the interendothelial junction. Immunostaining of the mouse aorta revealed an inclination of the cell-cell junction by 13° in direction of flow in the descending aorta where flow is unidirectional. In contrast, polygonal cells of the inner curvature where flow is disturbed did not have any preferential inclination. Using a membrane specific dye, the angle of inclination of the junction was dynamically monitored using live cell confocal microscopy in confluent human endothelial cell monolayers. Upon application of shear the junctions began inclining within minutes to a final angle of 10° in direction of flow. Retrograde flow led to a reversal of junctional inclination. Flow-induced junctional inclination was shown to be independent of the cytoskeleton or glycocalyx. Additionally, within seconds, retrograde flow led to significantly higher intracellular calcium responses than orthograde flow. Together, these results show for the first time that the endothelial intercellular junction inclination is dynamically responsive to flow direction and confers the ability to endothelial cells to rapidly sense and adapt to flow direction

    Technology Insight: magnetic navigation in coronary interventions

    No full text
    Magnetic navigation is rapidly emerging as a useful technology in the field of interventional cardiology. Precise control of the direction of a guide wire or a device in three-dimensional space offers a means to access vessels and areas of the heart that are often challenging to access with conventional methods. In this comprehensive Review, we detail the development of magnetic navigation technology and how this tool has been adapted for use during percutaneous coronary intervention. We aim to provide an up-to-date analysis of what is currently possible with this technology and an insight into what the future holds, particularly with respect to chronic occluded arteries and cell transplantation
    corecore