50 research outputs found

    AMPT-induced monoamine depletion in humans: evaluation of two alternative [123I]IBZM SPECT procedures

    Get PDF
    Purpose Acute monoamine depletion paradigms using alpha-methyl-para-tyrosine (AMPT) combined with single photon emission computed tomography (SPECT) have been used successfully to evaluate disturbances in central dopaminergic neurotransmission. However, severe side effects due to relatively high doses (4,500 to 8,000 mg) of AMPT have been reasons for study withdrawal. Thus, we assessed the effectiveness and tolerability of two alternative procedures, using lower doses of AMPT. Methods Six healthy subjects underwent three measurements of striatal dopamine D2 receptor (D2R)-binding potential (BPND) with SPECT and the selective radiolabeled D2R antagonist [123I]IBZM. All subjects were scanned in the absence of pharmacological intervention (baseline) and after two different depletion procedures. In the first depletion session, over 6 h, subjects were administered 1,500 mg of AMPT before scanning. In the second depletion session, over 25 h, subjects were administered 40 mg AMPT/kg body weight. We also administered the Subjective Well-being Under Neuroleptic Treatment Scale, a self-report instrument designed to measure the subjective experience of patients on neuroleptic medication. Results We found no change of mean D2R BPND after the first and short AMPT challenge compared to the baseline. However, we found a significant increase in striatal D2R BPND binding after the AMPT challenge adjusted for bodyweight compared to both other regimen. Although subjective well-being worsened after the prolonged AMPT challenge, no severe side effects were reported. Conclusions Our results imply a low-dosage, suitable alternative to the common AMPT procedure. The probability of side effects and study withdrawal can be reduced by this procedure

    Effect of a tyrosine-free amino acid mixture on regional brain catecholamine synthesis and release.

    No full text
    We report the effects of a tyrosine (and phenylalanine)-free amino acid mixture on tyrosine levels, ex vivo catecholamine synthesis and in vivo catecholamine release in brain regions of the rat. Administration of a tyrosine-free amino acid load reduced tissue levels of tyrosine (-50% after 2 h) in all brain regions examined (frontal cortex, hippocampus, striatum). The tyrosine-free amino acid mixture also reduced DOPA accumulation: this effect was most marked in striatum (-44%) and nucleus accumbens (-34%), areas with a predominantly dopaminergic innervation. Smaller decreases (-20-24%) were detected in other areas (cortex, hippocampus and hypothalamus). The effect on DOPA accumulation was prevented by supplementing the mixture with tyrosine/phenylalanine. The tyrosine-free amino acid mixture did not alter 5-HTP accumulation in any region. In microdialysis experiments, the tyrosine-free amino acid mixture did not consistently alter striatal extracellular dopamine under basal conditions but markedly, and dose-dependently, reduced the release of dopamine induced by amphetamine. In contrast, the tyrosine-free amino acid mixture did not alter either basal or amphetamine-evoked release of noradrenaline in hippocampus. Overall, these studies indicate that administration of a tyrosine-free amino acid mixture to rats depletes brain tyrosine to cause a decrease in regional brain catecholamine synthesis and release. Dopaminergic neurones appear to be more vulnerable to tyrosine depletion than noradrenergic neurones

    Effect of a selective 5-hydroxytryptamine reuptake inhibitor on brain extracellular noradrenaline: microdialysis studies using paroxetine.

    No full text
    The clinical efficacy of selective serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibitors (SSRIs) is normally attributed to their ability to increase brain 5-HT function although recent preclinical findings indicate that their selectivity for 5-HT over noradrenaline may be less evident in vivo. The present study investigated the effects of the SSRI, paroxetine, on extracellular levels of noradrenaline. Microdialysis was carried out in the hippocampus of the awake rat. In rats treated twice daily for 14 days with paroxetine (5 mg/kg s.c.), dialysate levels of noradrenaline showed a maintained two-fold increase compared to saline-injected controls. Paroxetine (5 mg/kg s.c.) administered once daily for 14 days did not cause a sustained increase in noradrenaline but levels showed a moderate (+58%) increase in response to a paroxetine challenge. Acute injection of paroxetine (5 mg/kg s.c.) did not elevate noradrenaline levels. Paroxetine (5 mg/kg s.c.) elevated dialysate 5-HT after both acute and repeated (twice daily for 14 days) treatment. The paroxetine-induced increase in noradrenaline (and 5-HT) was positively correlated with plasma concentrations of the drug, which were around the therapeutic range. In comparison to paroxetine, desipramine (10 mg/kg s.c.) caused a four-fold increase in dialysate noradrenaline (but did not change 5-HT) following repeated (once daily for 14 days) treatment and a two-fold increase at for acute treatment. In summary, despite its selectivity as a 5-HT reuptake inhibitor, paroxetine increased extracellular levels of noradrenaline in rat hippocampus following repeated administration. We discuss the possibility that a facilitation of noradrenaline function might be involved in the antidepressant effect of paroxetine, and possibly other SSRIs

    Reduction of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: an [11C]raclopride PET study.

    No full text
    OBJECTIVE: Extracellular dopamine concentrations were estimated through measurement of [(11)C]raclopride binding with positron emission tomography after dietary manipulation of the dopamine precursors tyrosine and phenylalanine. METHOD: Healthy male subjects were scanned on two occasions: once after receiving a balanced amino acid drink and once after receiving a drink mixture from which tyrosine and phenylalanine were omitted. RESULTS: Dietary tyrosine and phenylalanine depletion increased [(11)C]raclopride binding in the striatum by a mean of 6%. The change in [(11)C]raclopride binding correlated significantly with the fall in the ratio of tyrosine and phenylalanine to large neutral amino acids. CONCLUSIONS: This is the first demonstration of an effect of a dietary manipulation on brain dopamine release in humans. This result provides support for the further investigation of the role of dietary manipulations in the treatment of neuropsychiatric disorders

    Tyrosine depletion attenuates the behavioural stimulant effects of amphetamine and cocaine in rats.

    No full text
    Neurochemical studies show that a tyrosine-free amino acid mixture depletes brain tyrosine and decreases dopamine synthesis and release. Here, we tested whether such a mixture would reduce the behavioural effects of amphetamine and other psychostimulants. A tyrosine-free amino acid mixture decreased the behavioural activation induced by both D-amphetamine (2 mg/kg s.c.) and cocaine (2 mg/kg s.c.). In contrast, the activation induced by the dopamine agonist, apomorphine (0.75 and 5 mg/kg s.c.), or the 5-hydroxytryptamine releasing agent, p-chloroamphetamine (2 mg/kg s.c.) was not altered. These findings provide behavioural evidence that tyrosine-free amino acid mixtures reduce presynaptic dopamine function in the brain

    Effect of valine on 5-HT-mediated prolactin release in healthy volunteers, and on mood in remitted depressed patients.

    No full text
    BACKGROUND: Animal experimental studies suggest that the amino acid valine may decrease brain serotonin (5-HT) function by inhibiting the transport of the 5-HT precursor, L-tryptophan, across the blood barrier. The aim of the present study was to assess whether valine could decrease brain 5-HT function in healthy subjects and provoke symptomatic relapse in recently remitted depressed patients taking antidepressant drug treatment. METHOD: We studied the effect of valine (30 g) on the prolactin (PRL) response to the 5-HT releasing agent, D-fenfluramine, in healthy male subjects and on the mood of 12 remitted depressed patients taking either selective serotonin re-uptake inhibitors (n = 10) or lithium and amitriptyline (n = 2). RESULTS: Valine significantly lowered the PRL response to D-fenfluramine in healthy subjects. In the remitted depressives, valine caused a mild but detectable lowering of mood on a number of measures but only one patient experienced a significant relapse in mood. CONCLUSIONS: Valine administration may decrease brain 5-HT neurotransmission in humans. This effect could explain the mild increase in depressive symptoms in patients taking 5-HT-potentiating drugs

    Low-dose tryptophan depletion in recovered depressed women induces impairments in autobiographical memory specificity.

    No full text
    BACKGROUND: Depressed patients perform poorly on tests of autobiographical memory specificity (AMS); this may have negative consequences for other important cognitive abilities, delays recovery from mood episodes, and, in recovered patients, may mediate vulnerability to future episodes. Although the cognitive mechanisms underlying AMS deficits are beginning to be understood, the neurobiological mechanisms remain unclear. Serotonin is implicated in both depression and long-term memory; therefore, temporary lowering of brain serotonin function via acute tryptophan depletion (ATD) offers a means of studying the role of serotonin in autobiographical memory specificity. MATERIALS AND METHODS: In this study, 24 previously depressed women underwent low-dose ATD or sham depletion and completed tests of initial and delayed memory, recollection- and familiarity-based recognition, and AMS. RESULTS: ATD did not differentially affect state mood. Compared with sham depletion, ATD impaired immediate recall on the Auditory Verbal Learning Test. Although ATD did not differentially impair recollection- and familiarity-based recognition, it did slow recognition of positive words. ATD also reduced autobiographical memory specificity in response to negative cue words. DISCUSSION: The results confirm previous findings that low-dose ATD can reinstate depression-congruent biases in cognition without causing depressive mood in vulnerable populations. The ATD-induced reduction in memory specificity suggests that serotonergic dysfunction may mediate depressive deficits in autobiographical memory; the interaction of cognitive and neurobiological vulnerability mechanisms is discussed
    corecore