12 research outputs found

    Fusion and Fission of Genes Define a Metric between Fungal Genomes

    Get PDF
    Gene fusion and fission events are key mechanisms in the evolution of gene architecture, whose effects are visible in protein architecture when they occur in coding sequences. Until now, the detection of fusion and fission events has been performed at the level of protein sequences with a post facto removal of supernumerary links due to paralogy, and often did not include looking for events defined only in single genomes. We propose a method for the detection of these events, defined on groups of paralogs to compensate for the gene redundancy of eukaryotic genomes, and apply it to the proteomes of 12 fungal species. We collected an inventory of 1,680 elementary fusion and fission events. In half the cases, both composite and element genes are found in the same species. Per-species counts of events correlate with the species genome size, suggesting a random mechanism of occurrence. Some biological functions of the genes involved in fusion and fission events are slightly over- or under-represented. As already noted in previous studies, the genes involved in an event tend to belong to the same functional category. We inferred the position of each event in the evolution tree of the 12 fungal species. The event localization counts for all the segments of the tree provide a metric that depicts the “recombinational” phylogeny among fungi. A possible interpretation of this metric as distance in adaptation space is proposed

    Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres

    No full text
    Conductive electrodes and electric circuits that can remain active and electrically stable under large mechanical deformations are highly desirable for applications such as flexible displays(1-3), field-effect transistors(4,5), energy-related devices(6,7), smart clothing(8) and actuators(9-11). However, high conductivity and stretchability seem to be mutually exclusive parameters. The most promising solution to this problem has been to use one-dimensional nanostructures such as carbon nanotubes and metal nanowires coated on a stretchable fabric(12,13), metal stripes with a wavy geometry(14,15), composite elastomers embedding conductive fillers(16,17) and interpenetrating networks of a liquid metal and rubber(18). At present, the conductivity values at large strains remain too low to satisfy requirements for practical applications. Moreover, the ability to make arbitrary patterns over large areas is also desirable. Here, we introduce a conductive composite mat of silver nanoparticles and rubber fibres that allows the formation of highly stretchable circuits through a fabrication process that is compatible with any substrate and scalable for large-area applications. A silver nanoparticle precursor is absorbed in electrospun poly (styrene-block-butadiene-block-styrene) (SBS) rubber fibres and then converted into silver nanoparticles directly in the fibre mat. Percolation of the silver nanoparticles inside the fibres leads to a high bulk conductivity, which is preserved at large deformations (sigma approximate to 2,200 S cm(-1) at 100% strain for a 150-mm-thick mat). We design electric circuits directly on the electrospun fibre mat by nozzle printing, inkjet printing and spray printing of the precursor solution and fabricate a highly stretchable antenna, a strain sensor and a highly stretchable light-emitting diode as examples of applications.close453

    Chemical and Biochemical Applications of MALDI TOF-MS Based on Analyzing the Small Organic Compounds

    No full text

    Multidrug-resistant cancer cells and cancer stem cells hijack cellular systems to circumvent systemic therapies, can natural products reverse this?

    No full text

    MALDI matrices for low molecular weight compounds: an endless story?

    No full text
    corecore