53 research outputs found

    Gene processing control loops suggested by sequencing, splicing, and RNA folding

    Get PDF
    Abstract Background Small RNAs are known to regulate diverse gene expression processes including translation, transcription, and splicing. Among small RNAs, the microRNAs (miRNAs) of 17 to 27 nucleotides (nts) undergo biogeneses including primary transcription, RNA excision and folding, nuclear export, cytoplasmic processing, and then bioactivity as regulatory agents. We propose that analogous hairpins from RNA molecules that function as part of the spliceosome might also be the source of small, regulatory RNAs (somewhat smaller than miRNAs). Results Deep sequencing technology has enabled discovery of a novel 16-nt RNA sequence in total RNA from human brain that we propose is derived from RNU1, an RNA component of spliceosome assembly. Bioinformatic alignments compel inquiring whether the novel 16-nt sequence or its precursor have a regulatory function as well as determining aspects of how processing intersects with the miRNA biogenesis pathway. Specifically, our preliminary in silico investigations reveal the sequence could regulate splicing factor Arg/Ser rich 1 (SFRS1), a gene coding an essential protein component of the spliceosome. All 16-base source sequences in the UCSC Human Genome Browser are within the 14 instances of RNU1 genes listed in wgEncodeGencodeAutoV3. Furthermore, 10 of the 14 instances of the sequence are also within a common 28-nt hairpin-forming subsequence of RNU1. Conclusions An abundant 16-nt RNA sequence is sourced from a spliceosomal RNA, lies in a stem of a predicted RNA hairpin, and includes reverse complements of subsequences of the 3'UTR of a gene coding for a spliceosome protein. Thus RNU1 could function both as a component of spliceosome assembly and as inhibitor of production of the essential, spliceosome protein coded by SFRS1. Beyond this example, a general procedure is needed for systematic discovery of multiple alignments of sequencing, splicing, and RNA folding data

    Analyses of In Vivo Interaction and Mobility of Two Spliceosomal Proteins Using FRAP and BiFC

    Get PDF
    U1-70K, a U1 snRNP-specific protein, and serine/arginine-rich (SR) proteins are components of the spliceosome and play critical roles in both constitutive and alternative pre-mRNA splicing. However, the mobility properties of U1-70K, its in vivo interaction with SR proteins, and the mobility of the U1-70K-SR protein complex have not been studied in any system. Here, we studied the in vivo interaction of U1-70K with an SR protein (SR45) and the mobility of the U1-70K/SR protein complex using bimolecular fluorescence complementation (BiFC) and fluorescence recovery after photobleaching (FRAP). Our results show that U1-70K exchanges between speckles and the nucleoplasmic pool very rapidly and that this exchange is sensitive to ongoing transcription and phosphorylation. BiFC analyses showed that U1-70K and SR45 interacted primarily in speckles and that this interaction is mediated by the RS1 or RS2 domain of SR45. FRAP analyses showed considerably slower recovery of the SR45/U1-70K complex than either protein alone indicating that SR45/U1-70K complexes remain in the speckles for a longer duration. Furthermore, FRAP analyses with SR45/U1-70K complex in the presence of inhibitors of phosphorylation did not reveal any significant change compared to control cells, suggesting that the mobility of the complex is not affected by the status of protein phosphorylation. These results indicate that U1-70K, like SR splicing factors, moves rapidly in the nucleus ensuring its availability at various sites of splicing. Furthermore, although it appears that U1-70K moves by diffusion its mobility is regulated by phosphorylation and transcription
    corecore