4 research outputs found

    Scanning-probe spectroscopy of semiconductor donor molecules

    Full text link
    Semiconductor devices continue to press into the nanoscale regime, and new applications have emerged for which the quantum properties of dopant atoms act as the functional part of the device, underscoring the necessity to probe the quantum structure of small numbers of dopant atoms in semiconductors[1-3]. Although dopant properties are well-understood with respect to bulk semiconductors, new questions arise in nanosystems. For example, the quantum energy levels of dopants will be affected by the proximity of nanometer-scale electrodes. Moreover, because shallow donors and acceptors are analogous to hydrogen atoms, experiments on small numbers of dopants have the potential to be a testing ground for fundamental questions of atomic and molecular physics, such as the maximum negative ionization of a molecule with a given number of positive ions[4,5]. Electron tunneling spectroscopy through isolated dopants has been observed in transport studies[6,7]. In addition, Geim and coworkers identified resonances due to two closely spaced donors, effectively forming donor molecules[8]. Here we present capacitance spectroscopy measurements of silicon donors in a gallium-arsenide heterostructure using a scanning probe technique[9,10]. In contrast to the work of Geim et al., our data show discernible peaks attributed to successive electrons entering the molecules. Hence this work represents the first addition spectrum measurement of dopant molecules. More generally, to the best of our knowledge, this study is the first example of single-electron capacitance spectroscopy performed directly with a scanning probe tip[9].Comment: In press, Nature Physics. Original manuscript posted here; 16 pages, 3 figures, 5 supplementary figure

    Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET

    No full text
    The ability to build structures with atomic precision is one of the defining features of nanotechnology. Achieving true atomic- level functionality, however, requires the ability to control the wavefunctions of individual atoms. Here, we investigate an approach that could enable just that. By collecting and analysing transport spectra of a single donor atom in the channel of a silicon FinFET, we present experimental evidence for the emergence of a new type of hybrid molecule system. Our experiments and simulations suggest that the transistor\u27s gate potential can be used to control the degree of hybridization of a single electron donor state between the nuclear potential of its donor atom and a nearby quantum well. Moreover, our theoretical analysis enables us to determine the species of donor (arsenic) implanted into each device as well as the degree of confinement imposed by the gate
    corecore