3,806 research outputs found
Convergence of Scalar-Tensor theories toward General Relativity and Primordial Nucleosynthesis
In this paper, we analyze the conditions for convergence toward General
Relativity of scalar-tensor gravity theories defined by an arbitrary coupling
function (in the Einstein frame). We show that, in general, the
evolution of the scalar field is governed by two opposite mechanisms:
an attraction mechanism which tends to drive scalar-tensor models toward
Einstein's theory, and a repulsion mechanism which has the contrary effect. The
attraction mechanism dominates the recent epochs of the universe evolution if,
and only if, the scalar field and its derivative satisfy certain boundary
conditions. Since these conditions for convergence toward general relativity
depend on the particular scalar-tensor theory used to describe the universe
evolution, the nucleosynthesis bounds on the present value of the coupling
function, , strongly differ from some theories to others. For
example, in theories defined by analytical
estimates lead to very stringent nucleosynthesis bounds on
(). By contrast, in scalar-tensor theories defined by
much larger limits on () are
found.Comment: 20 Pages, 3 Figures, accepted for publication in Class. and Quantum
Gravit
A spaceship with a thruster - one body, one force
A spaceship with one thruster producing a constant magnitude force is
analyzed for various initial conditions. This elementary problem, with one
object acted upon by one force, has value as a challenge to one's physical
intuition and in demonstrating the benefits and limitations of dimensional
analysis. In addition, the problem can serve to introduce a student to special
functions, provide a mechanical model for Fresnel integrals and the associated
Cornu spiral, or be used as an example in a numerical methods course. The
problem has some interesting and perhaps unexpected features.Comment: 8 pages, 12 figures. Submitted to the American Journal of Physics.
After it is published, it will be found at http://scitation.aip.org/aj
Upper limit to in scalar-tensor gravity theories
In a previous paper (Serna & Alimi 1996), we have pointed out the existence
of some particular scalar-tensor gravity theories able to relax the
nucleosynthesis constraint on the cosmic baryonic density. In this paper, we
present an exhaustive study of primordial nucleosynthesis in the framework of
such theories taking into account the currently adopted observational
constraints. We show that a wide class of them allows for a baryonic density
very close to that needed for the universe closure. This class of theories
converges soon enough towards General Relativity and, hence, is compatible with
all solar-system and binary pulsar gravitational tests. In other words, we show
that primordial nucleosynthesis does not always impose a very stringent bound
on the baryon contribution to the density parameter.Comment: uuencoded tar-file containing 16 pages, latex with 5 figures,
accepted for publication in Astrophysical Journal (Part 1
Symmetry-preserving contact interaction model for heavy-light mesons
We use a symmetry-preserving regularization method of ultraviolet divergences
in a vector-vector contact interac- tion model for low-energy QCD. The contact
interaction is a representation of nonperturbative kernels used Dyson-Schwinger
and Bethe-Salpeter equations. The regularization method is based on a
subtraction scheme that avoids standard steps in the evaluation of divergent
integrals that invariably lead to symmetry violation. Aiming at the study of
heavy-light mesons, we have implemented the method to the pseudoscalar pion and
Kaon mesons. We have solved the Dyson-Schwinger equation for the u, d and s
quark propagators, and obtained the bound-state Bethe-Salpeter amplitudes in a
way that the Ward-Green-Takahashi identities reflecting global symmetries of
the model are satisfied for arbitrary routing of the momenta running in loop
integrals
- âŠ