113 research outputs found

    Jack-Laurent symmetric functions for special values of parameters

    Get PDF
    Jack-Laurent symmetric functions for special values of parameter

    Orbits and invariants of super Weyl groupoid

    Get PDF
    We study the orbits and polynomial invariants of certain affine action of the super Weyl groupoid of Lie superalgebra gl(n,m) gl(n,m) , depending on a parameter. We show that for generic values of the parameter all the orbits are finite and separated by certain explicitly given invariants. We also describe explicitly the special set of parameters, for which the algebra of invariants is not finitely generated and does not separate the orbits, some of which are infinite

    Jacobi-Trudy formula for generalized Schur polynomials

    Get PDF
    Jacobi-Trudy formula for a generalization of Schur polynomials related to any sequence of orthogonal polynomials in one variable is given. As a corollary we have Giambelli formula for generalized Schur polynomials

    Euler characters and super Jacobi polynomials

    Get PDF
    We prove that Euler supercharacters for orthosymplectic Lie superalgebras can be obtained as a certain specialization of super Jacobi polynomials. A new version of Weyl type formula for super Schur functions and specialized super Jacobi polynomials play a key role in the proof

    Deformed Macdonald-Ruijsenaars operators and super Macdonald polynomials

    Get PDF
    It is shown that the deformed Macdonald-Ruijsenaars operators can be described as the restrictions on certain affine subvarieties of the usual Macdonald- Ruijsenaars operator in infinite number of variables. The ideals of these varieties are shown to be generated by the Macdonald polynomials related to Young diagrams with special geometry. The super Macdonald polynomials and their shifted version are introduced; the combinatorial formulas for them are given

    Euler characters and super Jacobi polynomials

    Get PDF
    We prove that Euler supercharacters for orthosymplectic Lie superalgebras can be obtained as a certain specialization of super Jacobi polynomials. A new version of Weyl type formula for super Schur functions and specialized super Jacobi polynomials play a key role in the proof

    Dunkl operators at infinity and Calogero-Moser systems

    Get PDF
    We define the Dunkl and Dunkl–Heckman operators in infinite number of variables and use them to construct the quantum integrals of the Calogero–Moser–Sutherland (CMS) problems at infinity. As a corollary, we have a simple proof of integrability of the deformed quantum CMS systems related to classical Lie superalgebras. We show how this naturally leads to a quantum version of the Moser matrix, which in the deformed case was not known before

    Jack-Laurent symmetric functions

    Get PDF
    We develop the general theory of Jack–Laurent symmetric functions, which are certain generalizations of the Jack symmetric functions, depending on an additional parameter 0

    Berezinians, Exterior Powers and Recurrent Sequences

    Full text link
    We study power expansions of the characteristic function of a linear operator AA in a pqp|q-dimensional superspace VV. We show that traces of exterior powers of AA satisfy universal recurrence relations of period qq. `Underlying' recurrence relations hold in the Grothendieck ring of representations of \GL(V). They are expressed by vanishing of certain Hankel determinants of order q+1q+1 in this ring, which generalizes the vanishing of sufficiently high exterior powers of an ordinary vector space. In particular, this allows to explicitly express the Berezinian of an operator as a rational function of traces. We analyze the Cayley--Hamilton identity in a superspace. Using the geometric meaning of the Berezinian we also give a simple formulation of the analog of Cramer's rule.Comment: 35 pages. LaTeX 2e. New version: paper substantially reworked and expanded, new results include
    corecore