23 research outputs found

    Effect of garlic on cardiovascular disorders: a review

    Get PDF
    Garlic and its preparations have been widely recognized as agents for prevention and treatment of cardiovascular and other metabolic diseases, atherosclerosis, hyperlipidemia, thrombosis, hypertension and diabetes. Effectiveness of garlic in cardiovascular diseases was more encouraging in experimental studies, which prompted several clinical trials. Though many clinical trials showed a positive effect of garlic on almost all cardiovascular conditions mentioned above, however a number of negative studies have recently cast doubt on the efficary of garlic specially its cholesterol lowering effect of garlic. It is a great challenge for scientists all over the world to make a proper use of garlic and enjoy its maximum beneficial effect as it is the cheapest way to prevent cardiovascular disease. This review has attempted to make a bridge the gap between experimental and clinical study and to discuss the possible mechanisms of such therapeutic actions of garlic

    Aged Garlic Extract Reduces Low Attenuation Plaque in Coronary Arteries of Patients with Metabolic Syndrome in a Prospective Randomized Double-Blind Study.

    No full text
    BackgroundAlthough several previous studies have demonstrated that aged garlic extract (AGE) inhibits the progression of coronary artery calcification, its effect on noncalcified plaque (NCP) has been unclear.ObjectiveThis study investigated whether AGE reduces coronary plaque volume measured by cardiac computed tomography angiography (CCTA) in patients with metabolic syndrome (MetS).MethodsFifty-five patients with MetS (mean ± SD age: 58.7 ± 6.7 y; 71% men) were prospectively assigned to consume 2400 mg AGE/d (27 patients) or placebo (28 patients) orally. Both groups underwent CCTA at baseline and follow-up 354 ± 41 d apart. Coronary plaque volume, including total plaque volume (TPV), dense calcium (DC), NCP, and low-attenuation plaque (LAP), were measured based upon predefined intensity cutoff values. Multivariable linear regression analysis, adjusted for age, gender, number of risk factors, hyperlipidemia medications, history of coronary artery disease, scan interval time, and baseline %TPV, was performed to examine whether AGE affected each plaque change.ResultsThe %LAP change was significantly reduced in the AGE group compared with the placebo group (-1.5% ± 2.3% compared with 0.2% ± 2.0%, P = 0.0049). In contrast, no difference was observed in %TPV change (0.3% ± 3.3% compared with 1.6% ± 3.0%, P = 0.13), %NCP change (0.2% ± 3.3% compared with 1.4% ± 2.9%, P = 0.14), and %DC change (0.2% ± 1.4%, compared with 0.2% ± 1.7%, P = 0.99). Multivariable linear regression analysis found a beneficial effect of AGE on %LAP regression (β: -1.61; 95% CI: -2.79, -0.43; P = 0.008).ConclusionsThis study indicates that the %LAP change was significantly greater in the AGE group than in the placebo group. Further studies are needed to evaluate whether AGE has the ability to stabilize vulnerable plaque and decrease adverse cardiovascular events. This trial was registered at clinicaltrials.gov as NCT01534910
    corecore