685 research outputs found

    Temperature Dependence of Thermopower in Strongly Correlated Multiorbital Systems

    Full text link
    Temperature dependence of thermopower in the multiorbital Hubbard model is studied by using the dynamical mean-field theory with the non-crossing approximation impurity solver. It is found that the Coulomb interaction, the Hund coupling, and the crystal filed splitting bring about non-monotonic temperature dependence of the thermopower, including its sign reversal. The implication of our theoretical results to some materials is discussed.Comment: 3 pages, 3 figure

    Triple-horizon spherically symmetric spacetime and holographic principle

    Full text link
    We present a family of spherically symmetric spacetimes, specified by the density profile of a vacuum dark energy, which have the same global structure as the de Sitter spacetime but the reduced symmetry which leads to a time-evolving and spatially inhomogeneous cosmological term. It connects smoothly two de Sitter vacua with different values of cosmological constant and corresponds to anisotropic vacuum dark fluid defined by symmetry of its stress-energy tensor which is invariant under the radial boosts. This family contains a special class distinguished by dynamics of evaporation of a cosmological horizon which evolves to the triple horizon with the finite entropy, zero temperature, zero curvature, infinite positive specific heat, and infinite scrambling time. Non-zero value of the cosmological constant in the triple-horizon spacetime is tightly fixed by quantum dynamics of evaporation of the cosmological horizon.Comment: Honorable Mentioned Essay - Gravity Research Foundation 2012; submitted to Int. J. Mod. Phys.

    Semidefinite Representation of the kk-Ellipse

    Full text link
    The kk-ellipse is the plane algebraic curve consisting of all points whose sum of distances from kk given points is a fixed number. The polynomial equation defining the kk-ellipse has degree 2k2^k if kk is odd and degree 2k(kk/2)2^k{-}\binom{k}{k/2} if kk is even. We express this polynomial equation as the determinant of a symmetric matrix of linear polynomials. Our representation extends to weighted kk-ellipses and kk-ellipsoids in arbitrary dimensions, and it leads to new geometric applications of semidefinite programming.Comment: 16 pages, 5 figure

    Future Foam

    Full text link
    We study pocket universes which have zero cosmological constant and non-trivial boundary topology. These arise from bubble collisions in eternal inflation. Using a simplified dust model of collisions we find that boundaries of any genus can occur. Using a radiation shell model we perform analytic studies in the thin wall limit to show the existence of geometries with a single toroidal boundary. We give plausibility arguments that higher genus boundaries can also occur. In geometries with one boundary of any genus a timelike observer can see the entire boundary. Geometries with multiple disconnected boundaries can also occur. In the spherical case with two boundaries the boundaries are separated by a horizon. Our results suggest that the holographic dual description for eternal inflation, proposed by Freivogel, Sekino, Susskind and Yeh, should include summation over the genus of the base space of the dual conformal field theory. We point out peculiarities of this genus expansion compared to the string perturbation series.Comment: 23 pages, 6 figure

    Scalar Three-point Functions in a CDL Background

    Full text link
    Motivated by the FRW-CFT proposal by Freivogel, Sekino, Susskind and Yeh, we compute the three-point function of a scalar field in a Coleman-De Luccia instanton background. We first compute the three-point function of the scalar field making only very mild assumptions about the scalar potential and the instanton background. We obtain the three-point function for points in the FRW patch of the CDL instanton and take two interesting limits; the limit where the three points are near the boundary of the hyperbolic slices of the FRW patch, and the limit where the three points lie on the past lightcone of the FRW patch. We expand the past lightcone three-point function in spherical harmonics. We show that the near boundary limit expansion of the three-point function of a massless scalar field exhibits conformal structure compatible with FRW-CFT when the FRW patch is flat. We also compute the three-point function when the scalar is massive, and explain the obstacles to generalizing the conjectured field-operator correspondence of massless fields to massive fields.Comment: 42 pages + appendices, 10 figures; v2, v3: minor correction
    corecore