139 research outputs found

    A novel in vitro platform for the study of SN38-induced mucosal damage and the development of Toll-like receptor 4-targeted therapeutic options

    Get PDF
    Tight junction and epithelial barrier disruption is a common trait of many gastrointestinal pathologies, including chemotherapy-induced gut toxicity. Currently, there are no validated in vitro models suitable for the study of chemotherapy-induced mucosal damage that allow paralleled functional and structural analyses of tight junction integrity. We therefore aimed to determine if a transparent, polyester membrane insert supports a polarized T84 monolayer with the phenotypically normal tight junctions. T84 cells (passage 5-15) were seeded into either 0.6 cm(2), 0.4 µm pore mixed-cellulose transwell hanging inserts or 1.12 cm(2), 0.4 µm pore polyester transwell inserts at varying densities. Transepithelial electrical resistance was measured daily to assess barrier formation. Immunofluoresence for key tight junction proteins (occludin, zonular occludens-1, claudin-1) and transmission electron microscopy were performed to assess tight junction integrity, organelle distribution, and polarity. Reverse transcription-polymerase chain reaction was performed to determine expression of toll-like receptor 4 (TLR4). Liquid chromatography was also conducted to assess SN38 degradation in this model. Polyester membrane inserts support a polarized T84 phenotype with functional tight junctions in vitro. Transmission electron microscopy indicated polarity, with apico-laterally located tight junctions. Immunofluorescence showed membranous staining for all tight junction proteins. No internalization was evident. T84 cells expressed TLR4, although this was significantly lower than levels seen in HT29 cells (P = .0377). SN38 underwent more rapid degradation in the presence of cells (-76.04 ± 1.86%) compared to blank membrane (-48.39 ± 4.01%), indicating metabolic processes. Polyester membrane inserts provide a novel platform for paralleled functional and structural analysis of tight junction integrity in T84 monolayers. T84 cells exhibit the unique ability to metabolize SN38 as well as expressing TLR4, making this an excellent platform to study clinically relevant therapeutic interventions for SN38-induced mucosal damage by targeting TLR4.Hannah R Wardill, Rachel J Gibson, Ysabella ZA Van Sebille, Kate R Secombe, Richard M Logan, and Joanne M Bowe

    TLR4-dependent claudin-1 internalization and secretagogue-mediated chloride secretion regulate irinotecan-induced diarrhea

    Get PDF
    Published OnlineFirst August 22, 2016Abstract not availableHannah R.Wardill, Joanne M. Bowen, Ysabella Z.A. Van Sebille, Kate R. Secombe, Janet K. Coller, Imogen A. Ball, Richard M. Logan, and Rachel J Gibso

    Irinotecan-induced gastrointestinal dysfunction and pain are mediated by common TLR4-dependent mechanisms

    Get PDF
    Published Online First March 29, 2016Abstract not availableHannah R. Wardill, Rachel J. Gibson, Ysabella Z.A. Van Sebille, Kate R. Secombe, Janet K. Coller, Imogen A. White, Jim Manavis, Mark R. Hutchinson, Vasiliki Staikopoulos, Richard M. Logan, and Joanne M. Bowe

    Thoracic Electrical Impedance Tomography—The 2022 Veterinary Consensus Statement

    Get PDF
    Electrical impedance tomography (EIT) is a non-invasive real-time non-ionising imaging modality that has many applications. Since the first recorded use in 1978, the technology has become more widely used especially in human adult and neonatal critical care monitoring. Recently, there has been an increase in research on thoracic EIT in veterinary medicine. Real-time imaging of the thorax allows evaluation of ventilation distribution in anesthetised and conscious animals. As the technology becomes recognised in the veterinary community there is a need to standardize approaches to data collection, analysis, interpretation and nomenclature, ensuring comparison and repeatability between researchers and studies. A group of nineteen veterinarians and two biomedical engineers experienced in veterinary EIT were consulted and contributed to the preparation of this statement. The aim of this consensus is to provide an introduction to this imaging modality, to highlight clinical relevance and to include recommendations on how to effectively use thoracic EIT in veterinary species. Based on this, the consensus statement aims to address the need for a streamlined approach to veterinary thoracic EIT and includes: an introduction to the use of EIT in veterinary species, the technical background to creation of the functional images, a consensus from all contributing authors on the practical application and use of the technology, descriptions and interpretation of current available variables including appropriate statistical analysis, nomenclature recommended for consistency and future developments in thoracic EIT. The information provided in this consensus statement may benefit researchers and clinicians working within the field of veterinary thoracic EIT. We endeavor to inform future users of the benefits of this imaging modality and provide opportunities to further explore applications of this technology with regards to perfusion imaging and pathology diagnosis

    Essential Functions of the Histone Demethylase Lid

    Get PDF
    Drosophila Little imaginal discs (Lid) is a recently described member of the JmjC domain class of histone demethylases that specifically targets trimethylated histone H3 lysine 4 (H3K4me3). To understand its biological function, we have utilized a series of Lid deletions and point mutations to assess the role that each domain plays in histone demethylation, in animal viability, and in cell growth mediated by the transcription factor dMyc. Strikingly, we find that lid mutants are rescued to adulthood by either wildtype or enzymatically inactive Lid expressed under the control of its endogenous promoter, demonstrating that Lid's demethylase activity is not essential for development. In contrast, ubiquitous expression of UAS-Lid transgenes lacking its JmjN, C-terminal PHD domain, and C5HC2 zinc finger were unable to rescue lid homozygous mutants, indicating that these domains carry out Lid's essential developmental functions. Although Lid-dependent demethylase activity is not essential, dynamic removal of H3K4me3 may still be an important component of development, as we have observed a genetic interaction between lid and another H3K4me3 demethylase, dKDM2. We also show that Lid's essential C-terminal PHD finger binds specifically to di- and trimethylated H3K4 and that this activity is required for Lid to function in dMyc-induced cell growth. Taken together, our findings highlight the importance of Lid function in the regulated removal and recognition of H3K4me3 during development

    Thoracic Electrical Impedance Tomography—The 2022 Veterinary Consensus Statement

    Full text link
    Electrical impedance tomography (EIT) is a non-invasive real-time non-ionising imaging modality that has many applications. Since the first recorded use in 1978, the technology has become more widely used especially in human adult and neonatal critical care monitoring. Recently, there has been an increase in research on thoracic EIT in veterinary medicine. Real-time imaging of the thorax allows evaluation of ventilation distribution in anesthetised and conscious animals. As the technology becomes recognised in the veterinary community there is a need to standardize approaches to data collection, analysis, interpretation and nomenclature, ensuring comparison and repeatability between researchers and studies. A group of nineteen veterinarians and two biomedical engineers experienced in veterinary EIT were consulted and contributed to the preparation of this statement. The aim of this consensus is to provide an introduction to this imaging modality, to highlight clinical relevance and to include recommendations on how to effectively use thoracic EIT in veterinary species. Based on this, the consensus statement aims to address the need for a streamlined approach to veterinary thoracic EIT and includes: an introduction to the use of EIT in veterinary species, the technical background to creation of the functional images, a consensus from all contributing authors on the practical application and use of the technology, descriptions and interpretation of current available variables including appropriate statistical analysis, nomenclature recommended for consistency and future developments in thoracic EIT. The information provided in this consensus statement may benefit researchers and clinicians working within the field of veterinary thoracic EIT. We endeavor to inform future users of the benefits of this imaging modality and provide opportunities to further explore applications of this technology with regards to perfusion imaging and pathology diagnosis

    Guidelines for reporting on animal fecal transplantation (GRAFT) studies: recommendations from a systematic review of murine transplantation protocols

    Get PDF
    Fecal microbiota transplant (FMT) is a powerful tool used to connect changes in gut microbial composition with a variety of disease states and pathologies. While FMT enables potential causal relationships to be identified, the experimental details reported in preclinical FMT protocols are highly inconsistent and/or incomplete. This limitation reflects a current lack of authoritative guidance on reporting standards that would facilitate replication efforts and ultimately reproducible science. We therefore systematically reviewed all FMT protocols used in mouse models with the goal of formulating recommendations on the reporting of preclinical FMT protocols. Search strategies were applied across three databases (PubMed, EMBASE, and Ovid Medline) until June 30, 2020. Data related to donor attributes, stool collection, processing/storage, recipient preparation, administration, and quality control were extracted. A total of 1753 papers were identified, with 241 identified for data extraction and analysis. Of the papers included, 92.5% reported a positive outcome with FMT intervention. However, the vast majority of studies failed to address core methodological aspects including the use of anaerobic conditions (91.7% of papers lacked information), storage (49.4%), homogenization (33.6%), concentration (31.5%), volume (19.9%) and administration route (5.3%). To address these reporting limitations, we developed theGuidelines for Reporting Animal Fecal Transplant (GRAFT) that guide reporting standards for preclinical FMT. The GRAFT recommendations will enable robust reporting of preclinical FMT design, and facilitate high-quality peer review, improving the rigor and translation of knowledge gained through preclinical FMT studies.Kate R. Secombe, Ghanyah H. Al-Qadami, Courtney B. Subramaniam, Joanne M. Bowen, Jacqui Scott, Ysabella Z.A. Van Sebille ... et a
    • …
    corecore