7 research outputs found

    Super-silent FRET Sensor Enables Live Cell Imaging and Flow Cytometric Stratification of Intracellular Serine Protease Activity in Neutrophils

    Get PDF
    Abstract Serine proteases are released by neutrophils to act primarily as antimicrobial proteins but excessive and unbalanced serine protease activity results in serious host tissue damage. Here the synthesis of a novel chemical sensor based on a multi-branched fluorescence quencher is reported. It is super-silent, exhibiting no fluorescence until de-quenched by the exemplar serine protease human neutrophil elastase, rapidly enters human neutrophils, and is inhibited by serine protease inhibitors. This sensor allows live imaging of intracellular serine protease activity within human neutrophils and demonstrates that the unique combination of a multivalent scaffold combined with a FRET peptide represents a novel and efficient strategy to generate super-silent sensors that permit the visualisation of intracellular proteases and may enable point of care whole blood profiling of neutrophils

    A mathematical model on the closing and opening mechanism for Venus flytrap

    No full text
    This paper investigates the opening and closing mechanism for the Venus flytrap (Dionaea muscipula). A mathematical model has been proposed to explain how the flytrap transitions between open, semi-closed and closed states. The model accounts for the charge accumulation of action potentials, which generated by mechanical stimulation of the sensitive trigger hairs on the lobes of the flytrap. Though many studies have been reported for the Venus flytrap opening and closing mechanism, this paper attempts to explain the mechanism from nonlinear dynamics and control perspective
    corecore