23 research outputs found
Pengaruh Harga Dan Promosi Terhadap Keputusan Pembelian Air Mineral Le-Minerale Pada Toko Retail Kota Tangerang (Studi Kasus Di Pt. Laris Food Indonesia)
Penulisan penelitian ini adalah bertujuan mengetahui seberapa jauh kualitas harga dan promosi terhadap keputusan pembelian produk Le-Minerale. Penelitian yang dilakukan adalah dengan menyebarkan kuisioner, sedangkan untuk metode penelitian yang dilakukan adalah dengan menggunakan metode deskriptif. Dalam melakukan penelitian ini penulis menggunakan analisis koefisien korelasi, analisis regresi linear berganda dan uj F serta uji T.Dari hasil analisis penulis memperoleh hasil sebagai berikut. Dari analisis regresi linear berganda maka didapat persamaan Y = 22.299 + 0.112X1+ 0.366X2dimana artinya Harga (variabel X1) terjadi peningkatan atau penurunan sebesar 1 poin maka keputusan pembelian produk Le-Minerale (variabel Y) akan mengalami peningkatan atau penurunan sebesar 0.112, dan promosi (variabel X2) terjadi peningkatan atau penurunan sebesar 1 poin maka keputusan pembelian produk LeMinerale (variabel Y) akan mengalami peningkatan atau penurunan sebesar 0.366. Dari analisis hubungan koefesien korelasi ditunjukan oleh nilai koefesien korelasi harga sebesar 0.236 mendekati 1, dan nilai koefesien korelasi promosi sebesar 0,473 maka hubungannya kuat dan memiliki hubungan positif terhadap keputusan pembelian produk Le-Minerale. Dari hasil uji F model 1 didapat nilai 4.608, dan untuk model 2 didapat nilai 12.341 dimana nilai tersebut lebih besar dari Ftabel sebesar 2.72, dengan demikian Ho ditolak dan Ha diterima. Pada uji T diketahui hasil, pada kolom T diketahui bahwa Thitung untuk harga (X1) adalah sebesar 1.386, kolom Thitung untuk promosi (X2) adalah sebesar 4.360, dengan menggunakan tabel distribusi normal T dan menggunakan tingkat kesalahan (α) sebesar 5% serta kebebasan (degree of freedom) atau (df) n-2 = 80-2 = 78, maka diperoleh nilai distribusi tabel T adalah 1.990. Oleh karena Thitung harga < dari tabel T yaitu 1990, maka Ho diterima dan Ha ditolak dan promosi > dari tabel T yaitu 1.990, maka Ho ditolakdan Ha diterima 
Supernovae from massive stars
Massive stars, by which we mean those stars exploding as core collapse
supernovae, play a pivotal role in the evolution of the Universe. Therefore,
the understanding of their evolution and explosion is fundamental in many
branches of physics and astrophysics, among which, galaxy evolution,
nucleosynthesis, supernovae, neutron stars and pulsars, black holes, neutrinos
and gravitational waves. In this chapter, the author presents an overview of
the presupernova evolution of stars in the range between 13 and 120 , with initial metallicities between [Fe/H]=-3 and [Fe/H]=0 and initial
rotation velocities . Emphasis is placed upon those
evolutionary properties that determine the final fate of the star with special
attention to the interplay among mass loss, mixing and rotation. A general
picture of the evolution and outcome of a generation of massive stars, as a
function of the initial mass, metallicity and rotation velocity, is finally
outlined.Comment: Author version of a chapter for 'Handbook of Supernovae,' edited by
A. Alsabti and P. Murdin, Springer. 59 pages, 27 figure
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Recommended from our members
Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo.
We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone