12 research outputs found

    Risk Adjustment In Neurocritical care (RAIN)--prospective validation of risk prediction models for adult patients with acute traumatic brain injury to use to evaluate the optimum location and comparative costs of neurocritical care: a cohort study.

    Get PDF
    OBJECTIVES: To validate risk prediction models for acute traumatic brain injury (TBI) and to use the best model to evaluate the optimum location and comparative costs of neurocritical care in the NHS. DESIGN: Cohort study. SETTING: Sixty-seven adult critical care units. PARTICIPANTS: Adult patients admitted to critical care following actual/suspected TBI with a Glasgow Coma Scale (GCS) score of < 15. INTERVENTIONS: Critical care delivered in a dedicated neurocritical care unit, a combined neuro/general critical care unit within a neuroscience centre or a general critical care unit outside a neuroscience centre. MAIN OUTCOME MEASURES: Mortality, Glasgow Outcome Scale - Extended (GOSE) questionnaire and European Quality of Life-5 Dimensions, 3-level version (EQ-5D-3L) questionnaire at 6 months following TBI. RESULTS: The final Risk Adjustment In Neurocritical care (RAIN) study data set contained 3626 admissions. After exclusions, 3210 patients with acute TBI were included. Overall follow-up rate at 6 months was 81%. Of 3210 patients, 101 (3.1%) had no GCS score recorded and 134 (4.2%) had a last pre-sedation GCS score of 15, resulting in 2975 patients for analysis. The most common causes of TBI were road traffic accidents (RTAs) (33%), falls (47%) and assault (12%). Patients were predominantly young (mean age 45 years overall) and male (76% overall). Six-month mortality was 22% for RTAs, 32% for falls and 17% for assault. Of survivors at 6 months with a known GOSE category, 44% had severe disability, 30% moderate disability and 26% made a good recovery. Overall, 61% of patients with known outcome had an unfavourable outcome (death or severe disability) at 6 months. Between 35% and 70% of survivors reported problems across the five domains of the EQ-5D-3L. Of the 10 risk models selected for validation, the best discrimination overall was from the International Mission for Prognosis and Analysis of Clinical Trials in TBI Lab model (IMPACT) (c-index 0.779 for mortality, 0.713 for unfavourable outcome). The model was well calibrated for 6-month mortality but substantially underpredicted the risk of unfavourable outcome at 6 months. Baseline patient characteristics were similar between dedicated neurocritical care units and combined neuro/general critical care units. In lifetime cost-effectiveness analysis, dedicated neurocritical care units had higher mean lifetime quality-adjusted life-years (QALYs) at small additional mean costs with an incremental cost-effectiveness ratio (ICER) of £14,000 per QALY and incremental net monetary benefit (INB) of £17,000. The cost-effectiveness acceptability curve suggested that the probability that dedicated compared with combined neurocritical care units are cost-effective is around 60%. There were substantial differences in case mix between the 'early' (within 18 hours of presentation) and 'no or late' (after 24 hours) transfer groups. After adjustment, the 'early' transfer group reported higher lifetime QALYs at an additional cost with an ICER of £11,000 and INB of £17,000. CONCLUSIONS: The risk models demonstrated sufficient statistical performance to support their use in research but fell below the level required to guide individual patient decision-making. The results suggest that management in a dedicated neurocritical care unit may be cost-effective compared with a combined neuro/general critical care unit (although there is considerable statistical uncertainty) and support current recommendations that all patients with severe TBI would benefit from transfer to a neurosciences centre, regardless of the need for surgery. We recommend further research to improve risk prediction models; consider alternative approaches for handling unobserved confounding; better understand long-term outcomes and alternative pathways of care; and explore equity of access to postcritical care support for patients following acute TBI. FUNDING: The National Institute for Health Research Health Technology Assessment programme

    A multicentre, randomised controlled trial comparing the clinical effectiveness and cost-effectiveness of early nutritional support via the parenteral versus the enteral route in critically ill patients (CALORIES)

    Get PDF
    BACKGROUND: Malnutrition is a common problem in critically ill patients in UK NHS critical care units. Early nutritional support is therefore recommended to address deficiencies in nutritional state and related disorders in metabolism. However, evidence is conflicting regarding the optimum route (parenteral or enteral) of delivery. OBJECTIVES: To estimate the effect of early nutritional support via the parenteral route compared with the enteral route on mortality at 30 days and on incremental cost-effectiveness at 1 year. Secondary objectives were to compare the route of early nutritional support on duration of organ support; infectious and non-infectious complications; critical care unit and acute hospital length of stay; all-cause mortality at critical care unit and acute hospital discharge, at 90 days and 1 year; survival to 90 days and 1 year; nutritional and health-related quality of life, resource use and costs at 90 days and 1 year; and estimated lifetime incremental cost-effectiveness. DESIGN: A pragmatic, open, multicentre, parallel-group randomised controlled trial with an integrated economic evaluation. SETTING: Adult general critical care units in 33 NHS hospitals in England. PARTICIPANTS: 2400 eligible patients. INTERVENTIONS: Five days of early nutritional support delivered via the parenteral (n = 1200) and enteral (n = 1200) route. MAIN OUTCOME MEASURES: All-cause mortality at 30 days after randomisation and incremental net benefit (INB) (at £20,000 per quality-adjusted life-year) at 1 year. RESULTS: By 30 days, 393 of 1188 (33.1%) patients assigned to receive early nutritional support via the parenteral route and 409 of 1195 (34.2%) assigned to the enteral route had died [p = 0.57; absolute risk reduction 1.15%, 95% confidence interval (CI) -2.65 to 4.94; relative risk 0.97 (0.86 to 1.08)]. At 1 year, INB for the parenteral route compared with the enteral route was negative at -£1320 (95% CI -£3709 to £1069). The probability that early nutritional support via the parenteral route is more cost-effective - given the data - is < 20%. The proportion of patients in the parenteral group who experienced episodes of hypoglycaemia (p = 0.006) and of vomiting (p < 0.001) was significantly lower than in the enteral group. There were no significant differences in the 15 other secondary outcomes and no significant interactions with pre-specified subgroups. LIMITATIONS: Blinding of nutritional support was deemed to be impractical and, although the primary outcome was objective, some secondary outcomes, although defined and objectively assessed, may have been more vulnerable to observer bias. CONCLUSIONS: There was no significant difference in all-cause mortality at 30 days for early nutritional support via the parenteral route compared with the enteral route among adults admitted to critical care units in England. On average, costs were higher for the parenteral route, which, combined with similar survival and quality of life, resulted in negative INBs at 1 year. FUTURE WORK: Nutritional support is a complex combination of timing, dose, duration, delivery and type, all of which may affect outcomes and costs. Conflicting evidence remains regarding optimum provision to critically ill patients. There is a need to utilise rigorous consensus methods to establish future priorities for basic and clinical research in this area. TRIAL REGISTRATION: Current Controlled Trials ISRCTN17386141. FUNDING: This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 20, No. 28. See the NIHR Journals Library website for further project information

    Effect of a Nurse-Led Preventive Psychological Intervention on Symptoms of Posttraumatic Stress Disorder Among Critically Ill Patients A Randomized Clinical Trial

    No full text
    Importance: A meta-analysis of outcomes during the 6 months after intensive care unit (ICU) discharge indicate a prevalence for clinically important posttraumatic stress disorder (PTSD) symptoms of 25%. Objective: To determine whether a nurse-led preventive, complex psychological intervention, initiated in the ICU, reduces patient-reported PTSD symptom severity at 6 months. Design, Setting, and Participants: A multicenter, parallel-group, cluster-randomized clinical trial with integrated economic and process evaluations conducted in 24 ICUs in the United Kingdom. Participants were critically ill patients who regained mental capacity following receipt of level 3 (intensive) care. A total of 2961 eligible patients were identified from September 2015 to January 2017. A total of 2048 were approached for participation in the ICU, of which 1458 provided informed consent. Follow-up was completed December 2017. Interventions: Twenty four ICUs were randomized 1:1 to the intervention or control group. Intervention ICUs (n = 12; 669 participants) delivered usual care during a baseline period followed by an intervention period. The preventive, complex psychological intervention comprised promotion of a therapeutic ICU environment plus 3 stress support sessions and a relaxation and recovery program delivered by trained ICU nurses to high-risk (acutely stressed) patients. Control ICUs (n = 12; 789 participants) delivered usual care in both baseline and intervention periods. Main Outcomes and Measures: The primary clinical outcome was PTSD symptom severity among survivors at 6 months measured using the PTSD Symptom Scale–Self-Report questionnaire (score range, 0-51, with higher scores indicating greater symptom severity; the minimal clinically important difference was considered to be 4.2 points). Results: Among 1458 enrolled patients (mean [SD] age, 58 [16] years; 599 women [41%]), 1353 (93%) completed the study and were included in the final analysis. At 6 months, the mean PTSD Symptom Scale–Self-Report questionnaire score in intervention ICUs was 11.8 (baseline period) compared with 11.5 (intervention period) (difference, −0.40 [95% CI, −2.46 to 1.67]) and in control ICUs, 10.1 (baseline period) compared with 10.2 (intervention period) (difference, 0.06 [95% CI, −1.74 to 1.85]) between periods. There was no significant difference in PTSD symptom severity at 6 months (treatment effect estimate [difference in differences] of −0.03 [95% CI, −2.58 to 2.52]; P = .98). Conclusions and Relevance: Among critically ill patients in the ICU, a nurse-led preventive, complex psychological intervention did not significantly reduce patient-reported PTSD symptom severity at 6 months. These findings do not support the use of this psychological intervention
    corecore