47 research outputs found

    Lack of functional alpha-lactalbumin prevents involution in Cape fur seals and identifies the protein as an apoptotic milk factor in mammary gland involution

    Get PDF
    The mammary gland undergoes a sophisticated programme of developmental changes during pregnancy/lactation. However, little is known about processes involving initiation of apoptosis at involution following weaning. We used fur seals as models to study the molecular process of involution as these animals display a unique mammary gland phenotype. Fur seals have long lactation periods whereby mothers cycle between secreting copious quantities of milk for 2 to 3 days suckling pups on land, with trips to sea alone to forage for up to 23 days during which time mammary glands remain active without initiating apoptosis/involution.<br /

    Protein Domain of Unknown Function 3233 is a Translocation Domain of Autotransporter Secretory Mechanism in Gamma proteobacteria

    Get PDF
    Vibrio cholerae, the enteropathogenic gram negative bacteria is one of the main causative agents of waterborne diseases like cholera. About 1/3rd of the organism's genome is uncharacterised with many protein coding genes lacking structure and functional information. These proteins form significant fraction of the genome and are crucial in understanding the organism's complete functional makeup. In this study we report the general structure and function of a family of hypothetical proteins, Domain of Unknown Function 3233 (DUF3233), which are conserved across gram negative gammaproteobacteria (especially in Vibrio sp. and similar bacteria). Profile and HMM based sequence search methods were used to screen homologues of DUF3233. The I-TASSER fold recognition method was used to build a three dimensional structural model of the domain. The structure resembles the transmembrane beta-barrel with an axial N-terminal helix and twelve antiparallel beta-strands. Using a combination of amphipathy and discrimination analysis we analysed the potential transmembrane beta-barrel forming properties of DUF3233. Sequence, structure and phylogenetic analysis of DUF3233 indicates that this gram negative bacterial hypothetical protein resembles the beta-barrel translocation unit of autotransporter Va secretory mechanism with a gene organisation that differs from the conventional Va system

    Interaction of Virstatin with Human Serum Albumin: Spectroscopic Analysis and Molecular Modeling

    Get PDF
    Virstatin is a small molecule that inhibits Vibrio cholerae virulence regulation, the causative agent for cholera. Here we report the interaction of virstatin with human serum albumin (HSA) using various biophysical methods. The drug binding was monitored using different isomeric forms of HSA (N form ∼pH 7.2, B form ∼pH 9.0 and F form ∼pH 3.5) by absorption and fluorescence spectroscopy. There is a considerable quenching of the intrinsic fluorescence of HSA on binding the drug. The distance (r) between donor (Trp214 in HSA) and acceptor (virstatin), obtained from Forster-type fluorescence resonance energy transfer (FRET), was found to be 3.05 nm. The ITC data revealed that the binding was an enthalpy-driven process and the binding constants Ka for N and B isomers were found to be 6.09×105 M−1 and 4.47×105 M−1, respectively. The conformational changes of HSA due to the interaction with the drug were investigated from circular dichroism (CD) and Fourier Transform Infrared (FTIR) spectroscopy. For 1∶1 molar ratio of the protein and the drug the far-UV CD spectra showed an increase in α- helicity for all the conformers of HSA, and the protein is stabilized against urea and thermal unfolding. Molecular docking studies revealed possible residues involved in the protein-drug interaction and indicated that virstatin binds to Site I (subdomain IIA), also known as the warfarin binding site

    Assembly and function of the Photosystem II manganese stabilizing protein: lessons from its natively unfolded behavior

    Full text link
    The Photosystem II (PS II) manganese stabilizing protein (MSP) possesses characteristics, including thermostability, ascribed to the natively unfolded class of proteins (Lydakis-Simantiris et al. (1999) Biochemistry 38: 404–414). A site-directed mutant of MSP, C28A, C51A, which lacks the -S–S- bridge, also binds to PS II at wild-type levels and reconstitutes oxygen evolution activity [Betts et al. (1996) Biochim Biophys Acta 1274: 135–142], although the mutant protein is even more disordered in solution. Both WT and C28A, C51A MSP aggregate upon heating, but an examination of the effects of protein concentration and pH on heat-induced aggregation showed that each MSP species exhibited greater resistance to aggregation at a pH near their p I (5.2) than do either bovine serum albumin (BSA) or carbonic anhydrase, which were used as model water soluble proteins. Increases in pH above the p I of the MSPs and BSA enhanced their aggregation resistance, a behavior which can be predicted from their charge (MSP) or a combination of charge and stabilization by -S–S- bonds (BSA). In the case of aggregation resistance by MSP, this is likely to be an important factor in its ability to avoid unproductive self-association reactions in favor of formation of the protein–protein interactions that lead to formation of the functional oxygen evolving complex.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43544/1/11120_2004_Article_7759.pd

    A Unified Model of the GABA(A) Receptor Comprising Agonist and Benzodiazepine Binding Sites

    Get PDF
    We present a full-length α(1)β(2)γ(2) GABA receptor model optimized for agonists and benzodiazepine (BZD) allosteric modulators. We propose binding hypotheses for the agonists GABA, muscimol and THIP and for the allosteric modulator diazepam (DZP). The receptor model is primarily based on the glutamate-gated chloride channel (GluCl) from C. elegans and includes additional structural information from the prokaryotic ligand-gated ion channel ELIC in a few regions. Available mutational data of the binding sites are well explained by the model and the proposed ligand binding poses. We suggest a GABA binding mode similar to the binding mode of glutamate in the GluCl X-ray structure. Key interactions are predicted with residues α(1)R66, β(2)T202, α(1)T129, β(2)E155, β(2)Y205 and the backbone of β(2)S156. Muscimol is predicted to bind similarly, however, with minor differences rationalized with quantum mechanical energy calculations. Muscimol key interactions are predicted to be α(1)R66, β(2)T202, α(1)T129, β(2)E155, β(2)Y205 and β(2)F200. Furthermore, we argue that a water molecule could mediate further interactions between muscimol and the backbone of β(2)S156 and β(2)Y157. DZP is predicted to bind with interactions comparable to those of the agonists in the orthosteric site. The carbonyl group of DZP is predicted to interact with two threonines α(1)T206 and γ(2)T142, similar to the acidic moiety of GABA. The chlorine atom of DZP is placed near the important α(1)H101 and the N-methyl group near α(1)Y159, α(1)T206, and α(1)Y209. We present a binding mode of DZP in which the pending phenyl moiety of DZP is buried in the binding pocket and thus shielded from solvent exposure. Our full length GABA(A) receptor is made available as Model S1

    Free Cysteine Modulates the Conformation of Human C/EBP Homologous Protein

    Get PDF
    The C/EBP Homologous Protein (CHOP) is a nuclear protein that is integral to the unfolded protein response culminating from endoplasmic reticulum stress. Previously, CHOP was shown to comprise extensive disordered regions and to self-associate in solution. In the current study, the intrinsically disordered nature of this protein was characterized further by comprehensive in silico analyses. Using circular dichroism, differential scanning calorimetry and nuclear magnetic resonance, we investigated the global conformation and secondary structure of CHOP and demonstrated, for the first time, that conformational changes in this protein can be induced by the free amino acid l-cysteine. Addition of l-cysteine caused a significant dose-dependent decrease in the protein helicity – dropping from 69.1% to 23.8% in the presence of 1 mM of l-cysteine – and a sequential transition to a more disordered state, unlike that caused by thermal denaturation. Furthermore, the presence of small amounts of free amino acid (80 µM, an 8∶1 cysteine∶CHOP ratio) during CHOP thermal denaturation altered the molecular mechanism of its melting process, leading to a complex, multi-step transition. On the other hand, high levels (4 mM) of free l-cysteine seemed to cause a complete loss of rigid cooperatively melting structure. These results suggested a potential regulatory function of l-cysteine which may lead to changes in global conformation of CHOP in response to the cellular redox state and/or endoplasmic reticulum stress

    Involvement of the recoverin C-terminal segment in recognition of the target enzyme rhodopsin kinase

    No full text
    NCS (neuronal Ca 2+ sensor) proteins belong to a family of calmodulin-related EF-hand Ca 2+-binding proteins which, in spite of a high degree of structural similarity, are able to selectively recognize and regulate individual effector enzymes in a Ca 2+-dependent manner. NCS proteins vary at their C-termini, which could therefore serve as structural control elements providing specific functions such as target recognition or Ca 2+ sensitivity. Recoverin, an NCS protein operating in vision, regulates the activity of rhodopsin kinase, GRK1, in a Ca 2+-dependent manner. In the present study, we investigated a series of recoverin forms that were mutated at the C-terminus. Using pull-down assays, surface plasmon resonance spectroscopy and rhodopsin phosphorylation assays, we demonstrated that truncation of recoverin at the C-terminus significantly reduced the affinity of recoverin for rhodopsin kinase. Site-directed mutagenesis of single amino acids in combination with structural analysis and computational modelling of the recoverin-kinase complex provided insight into the protein-protein interface between the kinase and the C-terminus of recoverin. Based on these results we suggest that Phe 3 from the N-terminal helix of rhodopsin kinase and Lys 192 from the C-terminal segment of recoverin form a cation-\u3c0 interaction pair which is essential for target recognition by recoverin. Taken together, the results of the present study reveal a novel rhodopsin-kinase-binding site within the C-terminal region of recoverin, and highlights its significance for target recognition and regulation

    The Formation of an Anti-Cancer Complex Under Simulated Gastric Conditions

    Get PDF
    This is the author’s version of a work that was accepted for publication in Food Digestion. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Food Digestion, 2013, 4(1), 7-18. The final publication is available at http://link.springer.com, DOI: 10.1007/s13228-012-0030-0.peer-reviewedA potent anti-cancer complex has previously been formed from two major components of milk. Human/bovine α-lactalbumin made lethal to tumour cells (H/BAMLET) is a protein–fatty acid complex that has been produced using the whey protein α-lactalbumin (α-LA) and the fatty acid oleic acid (OA). It was shown that it possesses selective anti-tumour and anti-microbial activity, which was first identified in acidic fractions of human breast milk. The aim of this study was to determine whether the two components would form a bioactive complex during simulated gastric (GI) transit. Results showed that a complex consisting of α-LA and OA is formed as the protein unfolds under acidic conditions and subsequently refolds upon pH increase. Analysis of this complex using Nuclear Magnetic Resonance and Fourier Transform Infra-Red (FTIR) spectroscopies estimated a stoichiometry of 4.1 and 4.4 oleic acids per mole of protein, respectively. FTIR and fluorescence spectroscopies showed that the structure was similar to that of BAMLET. Cytotoxicity testing against cancer cell line U937 cells showed that the complex had an LC50 value of 14.08 μM compared to 9.15 μM for BAMLET. These findings suggest that a BAMLET-like complex may be formed under the tested in vitro GI conditions.Department of Agriculture, Food and Marine, Ireland - Food Institutional Research Measure (project number 08RDTMFRC650); Teagasc Walsh Fellowship scheme; COST Action FA 1005, Infogest
    corecore