13 research outputs found

    Soil CO2 venting as one of the mechanisms for tolerance of Zn deficiency by rice in flooded soils.

    Get PDF
    We sought to explain rice (Oryza sativa) genotype differences in tolerance of zinc (Zn) deficiency in flooded paddy soils and the counter-intuitive observation, made in earlier field experiments, that Zn uptake per plant increases with increasing planting density. We grew tolerant and intolerant genotypes in a Zn-deficient flooded soil at high and low planting densities, and found (a) plant Zn concentrations and growth increased with planting density and more so in the tolerant genotype, whereas the concentrations of other nutrients decreased, indicating a specific effect on Zn uptake; (b) the effects of planting density and genotype on Zn uptake could only be explained if the plants induced changes in the soil to make Zn more soluble; and (c) the genotype and planting density effects were both associated with decreases in dissolved CO2 in the rhizosphere soil solution and resulting increases in pH. We suggest the increases in pH caused solubilisation of soil Zn by dissolution of alkali-soluble, Zn-complexing organic ligands from soil organic matter. We conclude that differences in venting of soil CO2 through root aerenchyma were responsible for the genotype and planting density effects

    Rodent damage to rice crops is not affected by the water‑saving technique, alternate wetting and drying

    Get PDF
    Rice farmers in Southeast Asia are hesitant to adopt the water-saving technology, alternate wetting and drying (AWD), for fear the practice will lead to increased rodent pest activity, consequently exacerbating yield loss. We examined the effects of AWD on the population dynamics, habitat use and damage levels inflicted on rice crops by the most important rodent pest of rice in Indonesia and the Philippines, Rattus argentiventer and R. tanezumi, respectively. Rice crop damage levels were not affected by the water management scheme employed. Rodent activity in rice fields was not influenced by water level. Both species tended to use the rice paddies over bunds regardless of water level, indicating that something other than water affects their habitat use, and we argue it is likely that the perceived risk of predation is the primary factor driving habitat use. Activity levels and damage inflicted by rodent pests on rice were not correlated. AWD had no effect on breeding and population dynamics of these species. Breeding of R. argentiventer is tied to the growth stages of rice, while available resource dictates breeding by R. tanezumi. Our findings clearly indicate that rice farmers in both Indonesia and the Philippines have no cause to reject AWD based on concerns that AWD would exacerbate crop losses by rodents. Given AWD is being promoted as a climate-smart technology for rice production in Asia and Africa, we strongly recommend its adoption without concerns that it would aggravate rodent pest impacts in lowland irrigated rice cropping systems

    Land management between crops affects soil inorganic nitrogen balance in a tropical rice system

    No full text
    Sustainable production of lowland rice (Oryza sativa L.) requires minimising undesirable soil nitrogen (N) losses via nitrate (NO₃⁻) leaching and denitrification. However, information is limited on the N transformations that occur between rice crops (fallow and land preparation), which control indigenous N availability for the subsequent crop. In order to redress this knowledge gap, changes in NO₃⁻ isotopic composition (δ¹⁵N and δ¹⁸O) in soil and water were measured from harvest through fallow, land preparation, and crop establishment in a 7 year old field trial in the Philippines. During the period between rice crops, plots were maintained either, continuously flooded, dry, or alternately wet and dry from rainfall. Plots were split with addition or removal of residue from the previous rice crop. No N fertilizer was applied during the experimental period. Nitrogen accumulated during the fallow (20 kg NH₄⁺ –N ha⁻¹ in flooded treatments and 10 kg NO₃⁻ –N ha⁻¹ in treatments with drying), but did not influence N availability for the subsequent crop. Nitrate isotope fractionation patterns indicated that denitrification drove this homogenisation: during land preparation ~50 % of inorganic N in the soil (top 10 cm) was denitrified, and by 2 weeks after transplanting this increased to > 80 % of inorganic N, regardless of fallow management. The 17 days between fallow and crop establishment controlled not only N attenuation (3–7 kg NO₃⁻ –N ha⁻¹ denitrified), but also N inputs (3–14 kg NO₃⁻ –N ha⁻¹ from nitrification), meaning denitrification was dependent on soil nitrification rates. While crop residue incorporation delayed the timing of N attenuation, it ultimately did not impact indigenous N supply. By measuring NO₃⁻ isotopic composition over depth and time, this study provides unique in situ measurements of the pivotal role of land preparation in determining paddy soil indigenous N supply

    Land management between crops affects soil inorganic nitrogen balance in a tropical rice system

    No full text
    Sustainable production of lowland rice (Oryza sativa L.) requires minimising undesirable soil nitrogen (N) losses via nitrate (NO₃⁻) leaching and denitrification. However, information is limited on the N transformations that occur between rice crops (fallow and land preparation), which control indigenous N availability for the subsequent crop. In order to redress this knowledge gap, changes in NO₃⁻ isotopic composition (δ¹⁵N and δ¹⁸O) in soil and water were measured from harvest through fallow, land preparation, and crop establishment in a 7 year old field trial in the Philippines. During the period between rice crops, plots were maintained either, continuously flooded, dry, or alternately wet and dry from rainfall. Plots were split with addition or removal of residue from the previous rice crop. No N fertilizer was applied during the experimental period. Nitrogen accumulated during the fallow (20 kg NH₄⁺ –N ha⁻¹ in flooded treatments and 10 kg NO₃⁻ –N ha⁻¹ in treatments with drying), but did not influence N availability for the subsequent crop. Nitrate isotope fractionation patterns indicated that denitrification drove this homogenisation: during land preparation ~50 % of inorganic N in the soil (top 10 cm) was denitrified, and by 2 weeks after transplanting this increased to > 80 % of inorganic N, regardless of fallow management. The 17 days between fallow and crop establishment controlled not only N attenuation (3–7 kg NO₃⁻ –N ha⁻¹ denitrified), but also N inputs (3–14 kg NO₃⁻ –N ha⁻¹ from nitrification), meaning denitrification was dependent on soil nitrification rates. While crop residue incorporation delayed the timing of N attenuation, it ultimately did not impact indigenous N supply. By measuring NO₃⁻ isotopic composition over depth and time, this study provides unique in situ measurements of the pivotal role of land preparation in determining paddy soil indigenous N supply
    corecore