37 research outputs found
Recommended from our members
Apollo: a sequence annotation editor
The well-established inaccuracy of purely computational methods for annotating genome sequences necessitates an interactive tool to allow biological experts to refine these approximations by viewing and independently evaluating the data supporting each annotation. Apollo was developed to meet this need, enabling curators to inspect genome annotations closely and edit them. FlyBase biologists successfully used Apollo to annotate the Drosophila melanogaster genome and it is increasingly being used as a starting point for the development of customized annotation editing tools for other genome projects
GoLoco motif proteins binding to Gαi1: insights from molecular simulations
Molecular dynamics simulations, computational alanine scanning and sequence analysis were used to investigate the structural properties of the Gαi1/GoLoco peptide complex. Using these methodologies, binding of the GoLoco motif peptide to the Gαi1 subunit was found to restrict the relative movement of the helical and catalytic domains in the Gαi1 subunit, which is in agreement with a proposed mechanism of GDP dissociation inhibition by GoLoco motif proteins. In addition, the results provide further insights into the role of the “Switch IV” region located within the helical domain of Gα, the conformation of which might be important for interactions with various Gα partners
A Comprehensive Genome-Wide Map of Autonomously Replicating Sequences in a Naive Genome
Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins. The machinery that initiates DNA synthesis is highly conserved, but the sites where the replication initiation proteins bind have diverged significantly. Functional comparative genomics is an obvious approach to study the evolution of replication origins. However, to date, the Saccharomyces cerevisiae replication origin map is the only genome map available. Using an iterative approach that combines computational prediction and functional validation, we have generated a high-resolution genome-wide map of DNA replication origins in Kluyveromyces lactis. Unlike other yeasts or metazoans, K. lactis autonomously replicating sequences (KlARSs) contain a 50 bp consensus motif suggestive of a dimeric structure. This motif is necessary and largely sufficient for initiation and was used to dependably identify 145 of the up to 156 non-repetitive intergenic ARSs projected for the K. lactis genome. Though similar in genome sizes, K. lactis has half as many ARSs as its distant relative S. cerevisiae. Comparative genomic analysis shows that ARSs in K. lactis and S. cerevisiae preferentially localize to non-syntenic intergenic regions, linking ARSs with loci of accelerated evolutionary change
C-type lectin-like domains in Fugu rubripes
BACKGROUND: Members of the C-type lectin domain (CTLD) superfamily are metazoan proteins functionally important in glycoprotein metabolism, mechanisms of multicellular integration and immunity. Three genome-level studies on human, C. elegans and D. melanogaster reported previously demonstrated almost complete divergence among invertebrate and mammalian families of CTLD-containing proteins (CTLDcps). RESULTS: We have performed an analysis of CTLD family composition in Fugu rubripes using the draft genome sequence. The results show that all but two groups of CTLDcps identified in mammals are also found in fish, and that most of the groups have the same members as in mammals. We failed to detect representatives for CTLD groups V (NK cell receptors) and VII (lithostathine), while the DC-SIGN subgroup of group II is overrepresented in Fugu. Several new CTLD-containing genes, highly conserved between Fugu and human, were discovered using the Fugu genome sequence as a reference, including a CSPG family member and an SCP-domain-containing soluble protein. A distinct group of soluble dual-CTLD proteins has been identified, which may be the first reported CTLDcp group shared by invertebrates and vertebrates. We show that CTLDcp-encoding genes are selectively duplicated in Fugu, in a manner that suggests an ancient large-scale duplication event. We have verified 32 gene structures and predicted 63 new ones, and make our annotations available through a distributed annotation system (DAS) server and their sequences as additional files with this paper. CONCLUSIONS: The vertebrate CTLDcp family was essentially formed early in vertebrate evolution and is completely different from the invertebrate families. Comparison of fish and mammalian genomes revealed three groups of CTLDcps and several new members of the known groups, which are highly conserved between fish and mammals, but were not identified in the study using only mammalian genomes. Despite limitations of the draft sequence, the Fugu rubripes genome is a powerful instrument for gene discovery and vertebrate evolutionary analysis. The composition of the CTLDcp superfamily in fish and mammals suggests that large-scale duplication events played an important role in the evolution of vertebrates